
RUHR-UNIVERSITÄT BOCHUM

Horst Görtz Institute for IT Security

Technical Report HGI-TR-2010-001

ROPdefender: A Detection Tool to Defend Against

Return-Oriented Programming Attacks

Lucas Davi, Ahmad-Reza Sadeghi, Marcel Winandy

System Security Lab
Ruhr University Bochum, Germany

Ruhr-Universität Bochum HGI-TR-2010-001
Horst Görtz Institute for IT Security First Revision: March 19, 2010
D-44780 Bochum, Germany Last Update: December 14, 2010

ROPdefender: A Detection Tool to Defend Against

Return-Oriented Programming Attacks∗

Lucas Davi, Ahmad-Reza Sadeghi, Marcel Winandy

Abstract

Return-oriented programming (ROP) is a technique that enables an adversary to construct ma-
licious programs with the desired behavior by combining short instruction sequences that already
reside in the memory space of a program. ROP attacks have already been demonstrated on various
processor architectures ranging from PCs to smartphones and special-purpose systems.

In this paper, we present our tool, ROPdefender, that dynamically detects conventional ROP
attacks (that are based on return instructions) with a reasonable runtime overhead of 2x. In con-
trast to existing solutions, (i) ROPdefender does not rely on side information (e.g., source code or
debugging information) and (ii) it instruments all return instructions issued during program execu-
tion including all returns from dynamic libraries, even if the adversary subverts the control-flow by
other means. Moreover, ROPdefender can handle Unix signals, non-local control transfers, C++ ex-
ceptions, lazy binding, and can be applied to multi-threaded applications such as Mozilla Firefox or
Acrobat Reader. Finally our implementation supports mainstream operating systems (Windows and
Linux) for the Intel x86 architecture. As proof of concept we show that ROPdefender successfully
detects recent Acrobat Reader exploits on Windows.

1 Introduction

Runtime attacks on software aim at subverting the execution flow of a program by redirecting execution
to malicious code injected by the adversary. Most of these attacks are memory-related and typically
exploit a buffer overflow vulnerability on the stack [4] or the heap [5]. It seems that buffer overflows are
still the dominant vulnerability in today’s applications: According to the NIST1 Vulnerability database
and as depicted in Figure 1, the number of reported buffer overflow vulnerabilities continue to range
from 600 to 700 per year.

Operating systems and processor manufactures aim to mitigate these kinds of attacks by realizing
the W ⊕ X (Writable XOR Executable) security model, which prevents an adversary from executing
malicious code by marking a memory page either writable or executable. Current Windows versions
(such as Windows XP, Vista, or Windows 7) enable W⊕X (named data execution prevention (DEP) [43]
in the Windows world) by default.

Return-oriented programming. However, return-oriented programming (ROP) [51] bypasses the
W ⊕ X model because no code has to be injected and only code that resides in the process’s image
is executed. ROP is a generalization of return-into-libc attacks [54]. In a return-into-libc attack the
adversary calls functions from the default UNIX C library libc without injecting malicious code. In
contrast, ROP does not rely on functions available in libc, but instead uses small pieces of code within
functions. Actually, the adversary calls no functions at all. For this purpose the adversary pushes onto
the stack various return addresses, whereas each return address points to an instruction sequence in libc
or in any other system library available in the process image. These instruction sequences are chained
together to perform the adversary’s attack.

The ROP attack method has been shown to be Turing-complete and its applicability has been demon-
strated on a broad range of architectures: on PC platforms with Intel x86 [51] or RISC processors such as

∗This is an updated and most recent version of the technical report. An earlier version was published before under the
same report number in March 2010.

1National Institute of Standards and Technology

2

2005 2006 2007 2008 2009
0

50

100

150

200

250

300

350

400
340

224
255

90

39

107
141

290

230 232

66
96

126 112
128

95
109

152 161
188

96 85
106

54 44

Other Buffer Overflows (not
further specified)
Stack Overflow
Integer Overflow
Heap Overflow
Format StringN

um
be

r o
f V

ul
ne

ra
bi

lit
ie

s

Figure 1: Buffer overflow vulnerabilities from 2005 to 2009

SPARC [8] and PowerPc [41]; on mobile devices with ARM based architectures [39]; and even on Harvard
architectures such as AVR microcontrollers [24], or Z80 processors in voting machines [12]. Moreover,
Hund et. al [33] presented a ROP based rootkit for the Windows operating system that bypasses kernel
integrity protections and Bruschi et al. [49] showed how to bypass address space layout randomization
(ASLR) [48] by using small ROP gadgets. Further, ROP-based attacks on well-established products such
as Adobe Reader [37], Adobe Flashplayer [3], or Apple Quicktime Player [28] have been identified re-
cently. Also recent attacks on Apple iPhone (that by default enables W ⊕X) are based on the principles
of ROP, e.g., a recent iPhone jailbreak [30] and a SMS database attack [36].

Hence, we believe that ROP is a real threat to today’s computing platforms. We expect malware
designers to employ this technique in the near future when protection mechanisms such as W⊕X become
widely deployed that would hinder conventional code injection attacks.

Although ROP is available on a broad range of architectures, it is particularly powerful on Intel x86
because of unintended instruction sequences. These unintended instruction sequences can be issued by
jumping into the arbitrary position of a valid instruction resulting in a new instruction sequence. Such
sequences can be found on Intel x86 due to variable-length instructions and unaligned memory access.

Existing Countermeasures. On the other hand, there exists a large number of proposals that aim
to detect corruption of return addresses. These solutions can be categorized in compiler -based solu-
tions [19, 57, 15, 40, 47]; instrumentation-based solutions such as securing function prologues and epi-
logues [16, 29], TRUSS (Transparent Runtime Shadow Stack) [53], Program Shepherding [38], Control-
Flow Integrity (CFI) and XFI [1, 2]; and hardware-facilitated solutions [26, 25]. However, as we discuss
in detail in related work (Section 6), the existing solutions suffer from the following shortcomings and
practical deficiencies: They either cannot provide complete detection of ROP attacks [16, 29, 38] or
require side information (e.g., debugging information [1, 2], or source code [19, 57, 15, 40, 47]) on the
program’s structure which are rarely provided in practice. Moreover, many of the instrumentation-based
tools suffer from false positives because they do not handle exceptional cases such as C++ exceptions,
Unix signals, or lazy binding. Finally, compiler-based solutions are from the end-user’s perspective not
always sufficient, because they will be only effective if all software vendors really deploy these compil-
ers. However, in practice, software vendors often focus on performance rather than on security, and
thus, many applications still suffer from various memory errors (see Figure 1) which allow adversaries
to launch ROP attacks. In this paper, we aim to tackle the problems of existing solutions with the goal
that end-users can immediately deploy a countermeasure against ROP.

Our contributions. In this paper, we present the design and implementation of ROPdefender , a
practical tool that enforces return address protection and tackles the problem of existing solutions.
We improve existing proposals by detecting unintended return instructions issued in a ROP attack
without requiring any side information (e.g., source code or debugging). Our tool is built on top of the
Pin framework [42], which provides just-in-time (jit) binary instrumentation. Pin is typically used for
program analysis such as performance evaluation and profiling. Moreover, it has been used in [59] for a
checksum-aware fuzzing tool and in [17] as dynamic taint analysis system. However, we use it for the
purpose to detect ROP attacks. We therefore developed a new Pintool, our ROPdefender , that enforces
return address checks at runtime. One of our main design goals was to create a practical tool that can be
used immediately on mainstream platforms without the need to change hardware or the whole operating

3

system design. Hence, we aimed to adopt already existing techniques such as shadow stack [15, 57, 26]
for return addresses, and the concept of binary instrumentation as used in taint tracking [46, 17] or
return address protection [29, 16, 38]. Our contributions are in particular the following:

• Defense without requiring side information: ROPdefender requires no specific side informa-
tion in order to enforce return address protection. It therefore does not suffer from practical con-
straints of CFI [1], which needs debugging information, or compiler-based approaches [19, 57, 15],
which need the source code.

• Flexibility and interoperability: ROPdefender can be applied to complex multi-threaded ap-
plications such as Acrobat Reader or Mozilla Firefox. It can be deployed on Windows and Linux,
and it requires in contrast to [25] no new hardware features.

• Handling exceptions: As we will discuss in Section 4, a sophisticated return address checker
has to handle exceptions which break the calling convention. ROPdefender is able to handle Unix
signals, C++ exceptions, non-local control transfers (i.e., setjmp/longjmp), and lazy binding used
in Linux-based systems to avoid resolving function start addresses at runtime.

• Security: We are able to detect sophisticated attacks such as return-oriented programming
(ROP) [51] which make use of unintended sequences (see Section 2.3 for an example). In contrast,
similar rewriting based approaches [16, 29] only incorporate return address checks for intended
returns.

• Performance: ROPdefender induces an overhead by a factor of about 2x. In Section 5.1 we
discuss that comparable jit-based instrumentation tools add higher or comparable performance
overhead.

• Detection of real-world exploits: As proof of concept we show in Section 5.2 that ROPdefender
is able to detect a recent ROP-based exploit for Acrobat Reader [37] within 31 seconds. This exploit
could not be detected by virus scanners until the signature of the exploit was known.

Our reference implementation of ROPdefender detects all ROP attacks based on returns. Further,
it detects any attack that is based on corrupting a return address, e.g., conventional stack smashing [4]
or return-into-libc [54]. However, recently Checkoway et al. [11] presented a new ROP attack which
uses indirect jumps rather than returns. We stress that our current implementation of ROPdefender is
currently not able to detect this new class of attack. We will discuss in Section 5.3 how such ROP attacks
without returns can be addressed in the future. In our future work we aim to integrate ROPdefender
into a control-flow integrity framework to also prevent ROP attacks without returns.

Outline. The remainder of this paper is organized as follows. Section 2 provides an overview to ROP
attacks. We present the main idea of our approach and the architecture of ROPdefender in Section 3.
We describe the details of our implementation in Section 4 and evaluate its performance and security in
Section 5. We discuss related work in Section 6 and conclude the paper in Section 7.

2 Background on Return-Oriented Programming

An attack based on return-oriented programming (ROP) is usually introduced by means of a buffer
overflow attack and uses principles of return-into-libc attacks. In the following we will present the
basic idea of ROP and discuss the significance of unintended instruction sequences found on the x86
architecture.

2.1 Basic Attack Technique

The main goal of a conventional buffer overflow attack [4] is to subvert the usual execution flow of
a program by redirecting it to a malicious code that was not originally placed by the programmer.
Basically, the attack consists of two tasks: (i) injecting new malicious code in some writable memory
area and (ii) changing a code pointer in such a way that it points to the injected malicious code. The
preferred code pointer to run the attack is the return address on the stack.

4

3

5

1

2

4

6

Return Address 1

Return Address 2

Return Address 3

Control Structures (CS)

Data

Code

Program Memory

Return

Return

Libraries (lib)

Adversary

Overflow Buffer
and corrupt CS

Instruction Sequence

Instruction Sequence

Buffer

Figure 2: Simplified return-oriented programming attack

If the W ⊕X model [48, 43] is enabled by the operating system (and supported by the hardware),
the adversary will be no longer able to execute injected code, since a memory page is either marked
writable or executable. Therefore, a more sophisticated attack was proposed using only pieces of code
that resides in the process’s image. The target for useful code pieces are especially within the Unix
C library libc which is linked to nearly every Unix program and provides a number of useful functions
(to the adversary). Hence, the return address points to a valid function in libc like system or execve.
The attack is referred to as return-into-libc [54].

However, return-into-libc attacks are subject to some constraints. First, only those functions that
reside in libc can be called by the adversary.2 If the designers of libc would remove functions that are
of particular interest to the adversary (e.g., system, execve, etc.) crafting a return-into-libc attack will
become more difficult. Second, the adversary can only execute straight-line code, i.e., he/she can only
invoke functions one after the other.

However, a more powerful class of attacks has been discovered recently [51], called return-oriented
programming (ROP). ROP [51] can be seen as generalization of return-into-libc attacks that resolves the
constraints of traditional return-into-libc attacks. ROP allows arbitrary computation without injecting
new code and without calling any functions. ROP attacks are even applicable for established systems
such as SPARC [8], Atmel AVR [24], voting machines [12], PowerPC [41] and even on ARM based
architectures used in mobile devices [39].

In contrast to return-into-libc attacks, ROP attacks use small CPU instruction sequences instead of
whole functions. These small instruction sequences range from two to five instructions and are chained
together to perform a particular atomic task referred to as gadget like load, store or some arithmetic
operation. Putting these gadgets together finally is referred to as return-oriented programming, and it
can be used to build an attack that, for instance, launches a shell to the adversary as in a conventional
buffer overflow attack.

Figure 2 illustrates the general ROP attack initiated by a buffer overflow. The difference to a
conventional buffer overflow [4] is that the adversary does not need to inject its own code and is not
restricted on functions available in libc but can use arbitrary instruction sequences of libc (or any other
library or code segment that is linked to the address space of the process under attack) without calling
functions explicitly. By chaining together the instructions sequences in a useful way, the adversary is
able to perform arbitrary computation.

Figure 2 shows a simplified version of a program’s memory layout consisting of a code section, libraries
(lib), a data section and a control structure section (CS). In order to mount a ROP attack, the adversary
exploits a memory-related vulnerability of a specific program. Traditionally, the ROP attack assumes a
buffer overflow vulnerability on the stack. However, we show in Section 2.3 that a ROP attack can be
also instantiated by other means. Hence, the adversary is able to overflow a local buffer and overwrite
adjacent control-flow information of the CS section (the stack), e.g. the return address of the vulnerable

2Generally, it is also possible to use code from the text segment or any other shared library linked into the process
image. However, still we have a defined set of code that can be used to craft a return-into-libc attack.

5

function (step 1). The adversary injects several return addresses each pointing to an instruction sequence
in the lib section. Upon function return, execution is not redirected to the original calling function but
instead to an instruction sequence in the lib section (step 2). This sequence is terminated by another
return instruction which pops return address 2 from the CS section (step 3) and redirects execution to
the next instruction sequence (step 4). This procedure is repeated until the adversary terminates the
attack.

As shown above instruction sequences are chained together via return instructions. In general, the
ROP attacks presented so far are all based on this principle, and hence, exploit return instructions or
function epilogue sequences to redirect execution from one sequence to the next sequence [51, 8, 24, 39,
41, 12, 33, 49]. But note that recently Checkoway et al. [11] illustrated a ROP attack that is solely
based on indirect jumps rather than returns. However, in this paper, we focus on conventional ROP
attacks (based on return instructions), but we discuss in Section 5.3 how this new class of attacks can
be addressed in the future.

2.2 Unintended Instruction Sequences

ROP attacks on the x86 architecture are particularly based on unintended instruction sequences. Unin-
tended instruction sequences are not originally placed by the programmer (although formed and executed
in a ROP attack). An unintended instruction sequence can be issued by jumping in the middle of a valid
instruction resulting in a new instruction sequence never intended by the programmer. These sequences
can be found in large amount on the x86 architecture because of the design principles of x86 as we will
describe in the following. The Intel x86 or IA-32 architecture [34] is a well-established instruction set
architecture deployed in personal computers. Shacham [51] outlines two outstanding properties of x86
that makes it particularly vulnerable to ROP attacks: (i) variable length instructions and (ii) unaligned
memory access.

Consider for instance the following x86 code with the given intended instruction sequence, whereas
the byte values are listed on the left side and the corresponding assembly code on the right side:

b8 13 00 00 00 mov $0x13,%eax

e9 c3 f8 ff ff jmp 3aae9

If the interpretation of the byte stream starts two bytes later at byte 00 (at the third byte of instruction
one), which is possible due to unaligned memory access, the following unintended instruction sequence
would be executed by the processor:

00 00 add %al,(%eax)

00 e9 add %ch,%cl

c3 ret

In the intended instruction sequence the c3 byte is part of the second instruction. But if the interpretation
starts two bytes later, the c3 byte will be interpreted as a return instruction. Shacham [51] especially
makes use of unintended instruction sequence ending in a return instruction to enforce ROP attacks.

2.3 ROP Attacks Based on Unintended Instruction Sequences

There exists several compiler and instrumentation-based solutions that aim to detect corruption of return
addresses. The main idea of these proposals is to keep copies of return addresses in a dedicated memory
area, referred to as shadow stack. Upon function return, these solutions check if the return address
has been modified. The idea was first proposed by Chiueh and Hsu [15] and was afterwards used
in [26, 57, 16, 29, 53]. In the following we show that neither compiler nor instrumentation-based solutions
securing returns only in function epilogues can prevent ROP attacks that are exclusively based on
unintended instruction sequences.

The general attack steps for a ROP attack are depicted in Figure 3: (1) Taking control over the
instruction pointer (IP) so that execution is redirected to the first instruction sequence and (2) let
the the stack pointer (SP) point to the ROP payload (consisting of several return addresses and some
data) to allow the chained execution of several instruction sequences. In order to avoid detection by
countermeasures that secure returns in function epilogues, these two steps have to performed without
using a return instruction in an intended function epilogue. Further, the instruction sequences executed

6

1

2

Stack

Payload

(return addresses + data)

Code

Libraries (lib)

Program Memory

Return

Return

Unintended Sequence 1

Unintended Sequence 2

New Address of SP

Stack Pointer (SP)

New Address of IP

Instruction Pointer (IP)

Figure 3: Initialization of a ROP attack: Taking control over the instruction pointer (IP) and the stack
pointer (SP)

must all be unintended, i.e., have to end in an unintended return. That unintended instruction sequences
are often found in x86 libraries has been shown in [51]. Indeed, the GALILEO algorithm proposed in [51]
avoids intended function epilogues and [51] shows that a Turing-complete gadget set can be also derived
from unintended sequences.

Usually, taking control over IP and SP can be performed through a conventional stack smashing
attack [4] by overwriting a function’s return address. However, this initial step, which is also required
for ROP attacks, can be detected by return address checkers securing returns in function epilogues. On
the other hand, stack smashing is not the only possibility to subvert the program flow. In the following
we discuss several alternative attack techniques which allow the adversary to gain control over IP and
SP without using intended returns.

Well-known vulnerabilities such as heap overflows [5], integer overflows [6] or format strings [27] allow
an adversary to write arbitrary integer values into a program’s memory space. Rather than overwriting
a return address, the adversary could overwrite pointers, e.g., function pointers or entries of the Global
Offset Table (GOT)3. If an adversary overwrites such a pointer, and the pointer is afterwards used as
jump target (i.e., the value of IP is changed to the value stored in the corrupted pointer), execution will
be redirected to code of the adversary’s choice. Hence, such pointer manipulations allow an adversary
to take control over IP. However, the adversary has also to ensure that SP points to the ROP payload in
order to ensure the chained execution of the instruction sequences. In general, this can be performed by
a stack-pivot sequence [20], which allows an adversary to change SP to an arbitrary value. For instance,
this can be achieved in x86 by following sequences:

mov %eax ,%esp ; r e t
xchg %esp ,%eax ; r e t
mov %ecx , %esp ; jmp ∗%edx

The first two sequences require the %eax register to contain the new value of SP (%esp). The first one
moves %eax to %esp and the second one exchanges the contents of %eax and %esp. Since both sequences
end in a return instruction (probably part of a function epilogue), they have to be unintended in order
to avoid detection by countermeasures that secure returns in function epilogues. On the other hand the
third sequence could be an intended instruction sequence, because it uses no return instruction and is
probably not part of a function epilogue: It moves the content of %ecx to %esp and afterwards performs
a jump to the address stored in %edx. Hence, %ecx must contain the new value of SP and %edx the
address of the first sequence.

Another very simple technique to take control over IP and SP without corrupting a return address is
through a setjmp vulnerability. For instance, this vulnerability has been exploited in [11] to instantiate
a ROP attack without returns. Basically, setjmp and longjmp realize non-local control transfers. Setjmp
stores besides some general-purpose registers, SP and IP, in a special data structure, called jmp buf. Once
longjmp is called, IP and SP are reset to the values stored in the jmp buf structure. If the adversary is

3The GOT holds absolute virtual addresses to library functions.

7

able to overwrite the contents of jmp buf before longjmp is called, e.g., by means of a buffer overflow,
then he gets direct control over IP and SP without using a return instruction part of a function epilogue.

3 Our Approach to Detect/Prevent ROP

In this section we present the architecture we propose to defeat ROP attacks. We present our assump-
tions, the adversary model, and our approach and high-level architecture.

3.1 Assumptions

As we will elaborate in Section 6 on related work, the crucial issue about ROP attacks is that they can be
constructed in such way to bypass countermeasures against buffer overflows or return-into-libc attacks.
In the following we briefly discuss the main assumptions of our defense architecture and our adversary
model.

1. Access to side information: We assume that we have no access to side information (e.g., source
code or debugging information) while defeating ROP. These information are rarely provided in
practice, impeding users to deploy defenses against ROP attacks.

2. Platform Security: We assume that the hardware and the operating system enforce the W ⊕
X security model. Thus, an adversary is forced to mount runtime attacks in a return-oriented
way. This is reasonable, since today’s processors feature a NX/XD (Non-Executable / Execution
Disabled) Bit and many operating systems already enable enable W ⊕X by default.

3. Security of our tool: The adversary cannot attack our tool itself or the underlying operating
system kernel. If the adversary would be able to do so, any detection method could be circumvented
or even disabled. Hence, we rely on other means of protection of the underlying trusted computing
base, e.g., hardening of the operating system kernel, verification or extensive testing as well as
load-time integrity checking of the software components belonging to our tool.

4. Capabilities of the adversary: The adversary is able to launch a ROP attack which cannot be
detected by compiler-based solutions securing function epilogues. We described in Section 2.3 how
such attacks can be constructed.

3.2 High-Level Description

Since we assume no access to source code (Assumption 2), we make use of a technique referred to as
instrumentation. Basically, instrumentation allows us to add extra code to a program to observe and
debug the program’s behavior [44]. We use a shadow stack to store a copy of the return address (similar
to, e.g., [15, 57, 26, 16, 29, 53]) once a function is called. We instrument all return instructions that are
issued during program execution and perform a return address check. In contrast to existing shadow
stack approaches, ROPdefender checks each return issued by the processor to detect even unintended
instruction sequences, and it handles various special cases, which are not covered by existing solutions,
but necessary for a practical defense tool.

According to the Intel x86 calling convention [34], return addresses have to be stored on the stack. A
function call is performed through the call instruction, which automatically pushes the return address
onto the top of the stack (TOS). After the called function has completed its task, it returns to the caller
through a ret instruction, which pops the return address from the stack and redirects execution to the
code pointed to by the return address. However, there are a few exceptions that violate the traditional
calling convention and the function returns elsewhere. We discuss and categorize these exceptions in
Section 4. For the moment, we assume that a function always returns to the address originally pushed
by the call instruction. Nevertheless, our prototype implementation of ROPdefender also handles the
exceptions as we detail in Section 4.

Our high-level solution for detecting ROP attacks is depicted in Figure 4. Before an instruction is
executed by the processor, our solution intercepts the instruction and examines the instruction’s type.
First, we check if the current instruction is a call. If this is the case, we store a copy of the pushed
return address in our shadow stack (transition 2a in Figure 4). Otherwise, if the instruction is a return

8

Instruction

1

2b

3b

Program Stack

Return 2

Return 1

Return 3

Return 4

Shadow Stack

Is Call?
Push TOS onto

Shadow Stack

2a

Compare TOS of

both Stacks
Is Return?

3a

Fetch next

Instruction

Saved
Return 4

Saved
Return 3

Saved
Return 2

Saved
Return 1

Figure 4: Our high-level approach

instruction, we check if the top return address on the shadow stack equals the return address on top of
the program stack (transition 2b and 3a in Figure 4). If there is a mismatch, the return address has
been corrupted or a calling exception occurred.

Our solution detects any return address violations: It does not only prevent ROP attacks. It also
provides detection of all buffer overflow attacks which overwrite return addresses.

3.3 Tools and Techniques

As mentioned above, we use instrumentation to detect ROP attacks. Generally, instrumentation can
be performed at runtime, at compile-time, or within the source code. For our purpose we focus on
dynamic binary instrumentation at runtime to avoid access to side information, e.g., source code, debug-
ging information, etc. Generally, there are two classes of dynamic binary instrumentation frameworks:
(i) probe-based and (ii) those using a just-in-time compiler (jit-based).

Probe-based instrumentation used in DynInst [9], Vulcan [23] or DTrace [10] enforces instrumentation
by replacing instructions with the so-called trampoline instructions in order to branch to instrumentation
code. DTrace, for instance, replaces instrumented instructions with special trap instructions that once
issued generate an interrupt. Afterwards the instrumentation code is executed.

Jit-based instrumentation frameworks like Valgrind [45], DynamoRIO [7], and Pin [42] use a just-
in-time compiler. In contrast to probe-based instrumentation no instructions in the executable are re-
placed. Before an instruction is executed by the processor, the instrumentation framework intercepts the
instruction and generates new code that enforces instrumentation and assures that the instrumentation
framework regains control after the instruction has been executed by the processor.

We use jit-based instrumentation since it allows us to detect sophisticated ROP attacks based on
unintended instruction sequences (see Section 2.3 for an example): It allows to intercept each instruction
before it is executed by the processor, whether the instruction was intended by the programmer or not.
In contrast, probe-based instrumentation frameworks rewrite instructions ahead of time with trampoline
instructions and consequently instrumentation is only performed if the trampoline instruction is really
reached.

3.4 General Architecture

We incorporate ROPdefender directly into the dynamic binary instrumentation (DBI) framework. The
DBI framework as well as the operating system are part of our trusted computing base (TCB). Hence,
we assume that an adversary cannot attack the ROPdefender software itself or the underlying operating
system kernel (see Assumption 4). Figure 5 depicts our proposed architecture to effectively defeat ROP
attacks.

The general workflow is as follows: The program is loaded and started under the control of the DBI
framework. The DBI framework ensures that (i) each instruction of the program is executed under control
of the DBI and (ii) all instructions are executed according to the ROPdefender specific instrumentation

9

Dynamic Binary Instrumentation (DBI) Framework

Process

Thread nThread 2Thread 1

Stack 2

Shadow

Stack 1

Shadow

Stack n

Shadow

ROPdefender

Detection Unit

Figure 5: General architecture of ROPdefender

code. More precisely, the current instruction of the process is intercepted by the DBI framework and
forwarded to ROPdefender which then enforces the return address check.

ROPdefender consists of a detection unit and several shadow stacks. The detection unit pushes/pops
return addresses onto/from the connected shadow stacks. Further, the detection unit is responsible for
enforcing the return address check. The reason why ROPdefender maintains multiple shadow stacks is
that a process may launch several execution threads. If all threads would share one shadow stack, false
positives would arise, since the threads would concurrently access the shadow stack.

4 Implementation

In this section we describe implementation details of our framework and our ROPdefender . For our
implementation we used the jit-based binary instrumentation framework Pin (version 2.8-33586) and the
Linux Ubuntu OS (version 10.04). We also implemented our tool on Windows XP, but we describe our
implementation details and exception handling in the following for the Linux Ubuntu OS. Further, our
implementation of the ROPdefender detection unit is one C++ file consisting of 165 lines of code.

The rationale behind using Pin [42] was that in [42] Cohn et al. benchmarked well-known jit-based
DBI frameworks and concluded that Pin achieves the best performance among them. Pin [42] is typically
used for program analysis such as performance evaluation and profiling.4 Intel uses Pin in the Intel
Parallel Studio [35] for memory and thread checking or bottleneck determination. However, we use this
binary instrumentation framework for the purpose of detecting ROP attacks.

4.1 Binary Instrumentation Architecture

Figure 6 shows the instantiation of our architecture.

Stack 1 Stack 2 Stack n

Pintool: ROPdefender

Detection Unit

I4 I4I4

I3

Shadow

Operating System

Program

Process

Thread 1 Thread 2 Thread n

Virtual Machine

Unit
JIT−Compiler

Code

Shadow

I2I6

I5

I1

JIT−Based Instrumentation Framework (Pin)

Binary

In
s

tru
m

e
n

ta
tio

n
 A

P
I

Emulation

Cache

Analyse
Routinen

Instrumentation
Routinen

Shadow

Trusted Computing Base (TCB)

Figure 6: Implementation of ROPdefender within the binary instrumentation framework Pin

4Note that Pin has been also used in [59] for a checksum-aware fuzzing tool and in [17] as dynamic taint analysis system.

10

Pin. Pin itself has mainly two components: (i) a code cache and (ii) a Virtual Machine (VM) which
contains a JIT compiler and an emulation unit. A program instrumented by Pin is loaded into the VM.
The JIT compiler enforces instrumentation on the program at runtime. The resulting instrumented code
is stored in the code cache in order to reduce performance overhead if code pieces are invoked multiple
times.

Pin is configured via Pintools. Basically, Pintools allow us to specify our own instrumentation code.
The JIT compiles instructions according to the Pintool. Pintools can be written in the C/C++ pro-
gramming language. Effectively, here is the place where we implement our ROPdefender . After Pin is
loaded and initialized, it initializes the ROPdefender detection unit. Then the program which we want
to protect is started under the control of Pin. When a program is started, Pin intercepts the first trace
of instructions and the JIT compiles it into new instructions in order to incorporate instrumentation
code. A trace is a sequence of instructions terminated by an unconditional branch. Trace instrumenta-
tion allows to instrument an executable one trace at a time. The trace consists of several basic blocks,
whereas each block is a single entry and a single exit (any branch) sequence of instructions. Instrument-
ing blocks is more efficient than instrumenting each instruction individually. Afterwards, the compiled
code is transferred to a code cache over the interface I5 that finally forwards the compiled instructions
to the operating system through interface I2. If a sequence of instructions is repeated, no recompilation
is necessary and the compiled code can directly be taken from the code cache. The emulation unit is
necessary for those instructions that cannot be executed directly (e.g., system calls). Such instructions
are forwarded to the operating system over interface I6.

Instrumentation and Analysis Routines. According to Figure 4 in Section 3.2, we specified two
instrumentation routines that check if the current instruction is a call or a return instruction. Further,
we defined two analysis routines that perform the actions and checks according to the steps 2a and 3a
in Figure 4. To implement a shadow stack for each thread we additionally use the C++ stack template
container. To avoid that one thread accesses the shadow stack of another thread, we use the thread local
storage (TLS) from the Pin API, whereas each thread must provide a key (created at thread creation)
to access its TLS. Elements can be pushed onto and popped off the shadow stack as for the usual stack
in program memory. The instrumentation routines of our ROPdefender use the inspection routines
Ins IsCall(INS ins) and Ins IsRet(INS ins) provided by the Pin API to determine if the tail instruction
of the current basic block is a call or a return instruction. If the instruction is a call instruction, then
we invoke an analysis routine (step 2a) that pushes the return address onto the appropriate shadow
stack. Otherwise, if the instruction is a return instruction, then a second analysis routine checks if the
return address the program wants to use equals to the address at the top of the corresponding shadow
stack (step 3a).

4.2 Handling Exceptions

As mentioned in Section 3.2, the common calling convention assumes that an invoked function will
always return to the address pushed onto the stack by the calling function. However, our experiments
have shown that there are a few exceptions violating this calling convention. These exceptions can be
categorized into three classes: (Class 1) A called function does not return, i.e., the control is transferred
out of the function before its return instruction has been reached. (Class 2) A function is invoked without
explicitly using a call instruction. (Class 3) A different return address is computed while the function is
running.

Due to all these exceptions, developing an efficient and also practical return address protection tool is
not straightforward. Although many proposals address the first class of exceptions (e.g., [15, 16, 29, 53,
38]), there exists no proposal addressing Class 2 and 3. In contrast, our ROPdefender handles all above
mentioned classes of exceptions. Note that the exceptions described below are the most well-known ones
(for instance, ROPdefender does not raise any false positive for a whole SPEC CPU benchmark run),
and there may be further exceptions in practice which may raise false positives. However, we believe
that additional exception handling can be easily integrated into ROPdefender based on the techniques
discussed below.

Class 1: Setjmp/Longjmp. For the case that the instrumented program uses the system calls setjmp
and longjmp then we expect false positives, because these functions allow to bypass multiple stack frames

11

A

B

C

B

C

A

B

C

A

B

C

A

2.

3.

5. Shadow Stack

Program Stack

Shadow Stack

A

and before A returns

Program Stack

Before longjmp() in C After longjmp() in C

setjmp()

longjmp()

1.

4.

Figure 7: Example for setjmp and longjmp

and violate therefore the usual calling convention with a non-local control transfer that can be seen as a
non-local goto. Figure 7 depicts a situation where a non-local control transfer occurs. Actually, it depicts
a function calling sequence. Function A starts execution and issues the setjmp system call which saves
the current stack state. Afterwards, A calls B and B calls C. Within the execution of C, the longjmp
system call is issued that restores the stack state to the state as it was at the time the setjmp system call
was invoked. Thus, C does not return to B, instead a non-local goto to A is enforced and the program
stack will no longer contain the stack frames of B and C.

Upon return of A, the return address on the program stack does not match the return address on the
shadow stack, because the stack frames of B and C are only removed from the program stack but not
from the shadow stack, which results in a false positive. To avoid a false positive, ROPdefender uses a
strategy similar to RAD [15] popping continuously return addresses off the shadow stack until a match
is found or until the shadow stack is empty. The latter case would indicate a ROP attack.

Class 2: Unix signals and lazy binding. A typical example for the second class are Unix signals.
Generally, signals are used in Unix-based systems to notify a process that a particular event (e.g.,
segmentation fault, arithmetic exception, illegal instruction, etc.) have occurred. Once a signal has been
received, the program invokes a signal handler. If such a signal handler is implemented through the
signal function, then execution is redirected to the handler function without a call instruction. Hence,
if the signal handler returns, ROPdefender would raise a false positive, because the return address of
the handler function has not been pushed onto the shadow stack. However, the relevant return address
is on top of the program stack before the signal handler is executed. To avoid a false positive, we use a
signal detector (provided by the Pin API) in order to copy the return address from the program stack
onto our shadow stack when a signal is received.

Another typical example for Class 2 is lazy binding which uses a return instruction to enforce a
jump to a called function. Lazy binding is enabled by default on UNIX-based systems. It decreases
the load-time of an application by delaying the resolving of function start addresses until they are
invoked for the first time. Otherwise, the dynamic linker has to resolve all functions at load-time,
although they may be never called. On our tested Ubuntu system, lazy binding involves the func-
tions dl rtld di serinfo and dl make stackexecutable, which are both part of the dynamic linker library
linux-ld.so. After dl rtld di serinfo resolves the function’s address, it transfers control to the code of
dl make stackexecutable by a jump instruction. Note that dl make stackexecutable is not explicitly

called. However, dl make stackexecutable redirects execution to the resolved function through a return
instruction (rather than through a jump/call). To avoid a false positive, we push the resolved function
address onto our shadow stack before the return of dl make stackexecutable occurs. Our experiments
have shown that the resolved address is stored into the %eax register after dl rtld di serinfo returns.
Hence, we let ROPdefender push the %eax register onto our shadow stack when dl rtld di serinfo returns
legally.

Class 3: C++ Exceptions. Another type of exceptions are those where the return address is com-
puted while the function executes, whereas the computed return address completely differs from the

12

return address pushed by the call instruction. A typical example for this are GNU C++ exceptions5

with stack unwinding. Basically, C++ exceptions are used in C++ applications to catch runtime errors
(e.g., division by zero) and other exceptions (e.g., file not found). A false positive would arise if the
exception occurs in a function that cannot handle the exception. In such case, the affected function
forwards the exception to its calling function. This procedure is repeated until a function is found which
is able to handle the exception. Otherwise the default exception handler is called. The invoked exception
handler is responsible for calling appropriate destructors6 for all created objects. This process is referred
to as stack unwinding and is mainly performed through the GNU unwind functions Unwind Resume
and Unwind RaiseException. These functions make a call to Unwind RaiseException Phase2 that com-
putes the return address and loads it at memory position -0xc8(%ebp), i.e., the %ebp register minus
200 (0xc8) Bytes points to the return address. In order to push the computed return address onto
our shadow stack, ROPdefender copies the return address at -0xc8(%ebp) on our shadow stack after
Unwind RaiseException Phase2 returns legally.

5 Evaluation

In this section we evaluate the performance of ROPdefender , show how ROPdefender detects recent
ROP-based exploits, and finally, we discuss ROP attacks exploiting indirect jumps.

5.1 Performance

To evaluate the overall performance, we have measured the CPU time of ROPdefender . We compare
our results to normal program execution and to execution with Pin but without instrumentation. Our
testing environment was a 3.0 GHz Intel Core2 Duo E6850 machine running Ubuntu 10.04 (i386) with
Linux kernel 2.6.28-11 and Pin version 2.8-33586. We ran the integer and floating-point benchmarks from
the SPEC CPU2006 Suite [56] using the reference inputs. Figure 8(b) and 8(a) depict our benchmark
results.

Pin without instrumentation. The Pin framework itself induces an average slowdown of 1.58x for
integer computations and of 1.15x for floating point computations. The slowdown for integer computa-
tions ranges from 1.01x to 2.35x. In contrast, for floating point computations the slowdown ranges from
1.00x to 1.64x.

Pin with ROPdefender . Applications under protection of our ROPdefender run on average 2.17x
for integer and 1.49x for floating point computations slower than applications running without Pin. The
slowdown for the integer benchmarks ranges from 1.01x to 3.54x, and for the floating point from 1.00x
to 3.60x. ROPdefender adds a performance overhead of 1.49x for integer and 1.24x for floating point
computations in average compared to applications running under Pin but without instrumentation. We
compared ROPdefender with other known tools such as the dynamic taint analysis systems DYTAN [17]
(also based on Pin) or TaintCheck [46] (based on Valgrind). According to the results in [17, 46], applica-
tions running under these tools are from 30x to 50x times slower which is enormously higher compared
to ROPdefender . Also DROP [14] causes an average slowdown of 5.3x.

To increase the performance of ROPdefender , we can either improve the Pin framework itself or
optimize the ROPdefender detection unit. The Pin developers are mainly concerned to optimize their
framework in order to achieve better performance. Hence, we believe that performance of Pin will be
continuously improved. Our detection unit avoids to check whether each instruction issued is a call/return
by using trace instrumentation (see Section 4). Hence, we only check if the tail instruction of the current
basic block is a call or return.

5Although we focus on the implementation of C++ exceptions with the GNU compiler, we believe that our solution
can be also adopted to operating systems using a different compiler.

6Destructors free the memory and resources for class objects and members.

13

410.bwaves
416.gamess

433.milc
434.zeusmp

435.gromacs
436.cactusADM

437.leslie3d
444.namd

447.dealII
450.soplex

453.povray
454.calculix

459.GemsFDTD
465.tonto

470.lbm
481.wrf

482.sphinx3

0

0,5

1

1,5

2

2,5

3

3,5

4

1,2 1,26 1,32
1,06 1,04 1,01 1,07 1,06

3,6

1,25

3,4

1,16 1,13

1,96

1

1,51
1,29

Pin
ROPdefender

S
lo

w
do

w
n

(a) Floating Point Benchmarks

400.perlbench
401.bzip2

403.gcc
429.mcf

445.gobmk
456.hmmer

458.sjeng
462.libquantum

464.h264ref
471.omnetpp

473.astar
483.xalancbmk

0

0,5

1

1,5

2

2,5

3

3,5

4
3,54

1,43

2,42

1,05

2,64

1,48

2,54

1,37

2,39
2,19

1,67

3,34

Pin
ROPdefender

S
lo

w
do

w
n

(b) Integer Benchmarks

Figure 8: SPEC CPU2006 Benchmark Results

5.2 Case Study

ROPdefender is able to detect and prevent available real-world ROP exploits. As a use-case, we apply
it to a recent Adobe Reader exploit [37]. Generally, the attack in [37] exploits an integer overflow in the
libtiff library, which is used for rendering TIFF images. The attack works as follows: By means of ROP
it allocates new memory marked as writable and executable in order to bypass W ⊕X. Afterwards, the
memcpy function is called to copy malicious code (stored in the PDF file itself) into the new memory
area. Finally, execution is redirected to the malicious code, which could, for instance, launch a remote
shell to the adversary. The exploit could not be recognized by virus scanners because its signature was
not yet available. Since ROPdefender does not rely on such side information, it can immediately detect
the attack.

In practice, an adversary will send the malicious PDF file to the victim user via an e-mail. The user
opens the PDF file and thus, a remote shell is launched to the adversary. In order to apply ROPdefender ,
we adapted it to Windows. Instead of opening the file directly, we opened the file under the control
of ROPdefender . Since the attack triggers an integer overflow and afterwards uses ROP instruction
sequences (ending in returns), ROPdefender can successfully detect the attack at the moment the first
sequence issues a return. Afterwards ROPdefender immediately terminates the application and informs
the user.

In total, it takes 31 seconds until ROPdefender detects the attack. Table 1 shows a snapshot of
ROPdefender ’s output when it is applied to the exploit. The function from where the return instruction
originated and the value of the instruction pointer (%eip) are shown in column 1 and 2. Sometimes
Pin is not able to identify the precise function name. In such case, the default function name .text is
assigned. The expected return address (placed on top of the shadow stack) and the malicious return
address (used by the adversary) are shown in column 3 and 4.

As can be seen in the first row, the first return address mismatch occurs at address 0x070072F7. The
expected return address at that time is 0x7C921E29. However, Adobe Reader aims to return to address

14

Function Name Instruction Pointer Expected Return Malicious Return

.text 0x070072F7 0x7C921E29 0x20CB5955

unnamedImageEntryPoint 0x070015BB NULL 0x070072F8

.text 0x0700154D NULL 0x070015BC

.text 0x070015BB NULL 0x0700154F

.text 0x07007FB2 NULL 0x070015BC

unnamedImageEntryPoint 0x070072F7 NULL 0x07007FB4

.text 0x070015BB NULL 0x070015BC

BIBLockSmithAssertNoLocksImpl 0x0700A8AC NULL 0x0700A8B0

.text 0x070015BB NULL 0x070015BC

BIBLockSmithAssertNoLocksImpl 0x070072F7 NULL 0x0700A8B0

unnamedImageEntryPoint 0x070052E2 NULL 0x070072F8

BIBInitialize4 0x07005C54 NULL 0x070052E4

.

Table 1: Detection of ROP Attack on Acrobat Reader with ROPdefender

0x20CB5955. ROPdefender now has to check if either a return address attack or a setjmp/longjmp
exception (see Section 4) occurred. Hence, ROPdefender pops continuously return addresses from the
shadow stack until a match is found. Since the malicious return address 0x20CB5955 is not part of our
shadow stack, ROPdefender will report the return address attack as shown in the first row of Table 1.
To show that ROPdefender detects all malicious returns issued in the exploit, we temporarily allow the
exploit to continue. As can be seen from Table 1, ROPdefender also detects the following malicious
returns. All following expected return addresses are NULL, because the shadow stack is empty after the
first mismatch.

5.3 Discussion and Future Work

Recently, Checkoway et al. [11] presented a new ROP attack for Intel x86 [13] and ARM architectures [21]
that is only based on indirect jump instructions rather on returns. On Intel x86, each instruction sequence
ends with an indirect jump to a pop-jump sequence which simulates the return and acts as a trampoline
after each instruction sequence, e.g., pop %edx; jmp *(edx): It pops the top of the stack into %edx
and afterwards jumps to the popped address. However, such sequences (even unintended ones) rarely
occur in practice. Therefore, Checkoway et al. [13] introduced the bring your own pop-jump (BYOPJ)
paradigm, which assumes the availability of a pop-jump sequence in the target program or in one of its
libraries. In order to defend against the new ROP attack, ROPdefender has to decide at runtime if a
jump target is a legal one or not. Since there exists no convention regarding the target of an indirect
jump instruction (in contrast to returns), it seems impossible to defend against such ROP attacks without
having some information about the program’s structure. However, ROP attacks based on indirect jumps
share some characteristics that are unique and rarely found in ordinary programs. As mentioned above
and shown in [13], pop-jump sequences are uncommon in ordinary programs, but the ROP attacks
without returns invoke such a sequence after each instruction sequence. Hence, it might be possible to
extend ROPdefender with a frequency measurement unit (as proposed in [22] and [14]). Actually, we
measured the frequency of indirect jumps with the SPEC CPU Benchmark suite. Approximately each
153th instruction is on average an indirect jump. Return instructions occur more frequently than indirect
jumps, in fact, each 59th instruction is a return instruction.7 The concrete implementation presented
in [13] make even use of two indirect jumps within three instructions (jmp *x; pop *y; jmp *y). Thus,
frequency analysis against ROP attacks based on indirect jumps can be deployed as first ad-hoc solution.
However, if the adversary issues a longer instruction sequence in between he might be able to bypass
such a defense. Moreover, the adversary might be also able to use other return-like instructions such
as indirect calls and thus bypass a solution that looks only for returns and indirect jumps. It remains
open if an effective countermeasure against ROP without returns can be deployed without knowing the
structure of the target program. However, ROPdefender with an extended frequency measurement unit
rules out already many ROP attacks even under the assumption that an adversary successfully subverted
the control flow by other means and afterwards only invokes unintended instruction sequences.

7Note that the results refer to C/C++ and FORTRAN compiled code. Other languages such as Forth might use indirect
jumps more frequently.

15

6 Related Work

We explore well-established countermeasures against buffer overflow attacks and discuss to what extend
they can be used in order to defeat ROP attacks.

6.1 Type Safe Languages

Type-safe languages like Java or C# are not as vulnerable to buffer overflow attacks as software written
in the C/C++ language. Type safety means that the operations performed on a variable are only those
as described by the type of the variable. However, in today’s operating systems we still have a large
amount of software that is written in unsafe languages.

6.2 The W ⊕X Model

This protection scheme prevents conventional buffer overflow attacks that redirect execution to injected
code by marking a memory page either executable or writable. W ⊕X can be enabled for Unix-based
operating systems by a kernel patch provided by PaX [48] and is enabled by default on recent Windows
operating systems such as Windows Vista and Windows Seven [43]. Even mainstream semiconductor
chip makers like AMD and Intel provide recently a new bit referred to as Non-Executable Bit (NX/XD)
that can be enabled on each memory page. W ⊕X cannot prevent ROP attacks that use code residing
in the process’s image (like libc) that is marked executable.

6.3 Randomization

Address Space Layout Randomization (ASLR) [48, 32] aims to prevent return-into-libc attacks by ran-
domizing base addresses of code segments. Since the adversary has to know the precise addresses of
all instruction sequences, this approach seems to effectively prevent ROP attacks. However, it has been
shown that ASLR can be bypassed by using derandomization attacks [52] or through information leakage
attacks targeting in particular web browsers such as Mozilla Firefox or Internet Explorer [55, 50, 58].
Moreover, some libraries or parts of the code segment may not be ASLR-compatible allowing adver-
saries to find enough useful instruction sequences to launch a ROP attack [49]. The latter uses ROP
gadgets that are placed at fixed locations in the code segment and launches a return-into-libc attack.
This is possible because the absolute base address of a library can be computed from the data stored
in the Global Offset Table (GOT). To prevent this attack, the authors of [49] propose to encrypt the
function addresses in the GOT at runtime. However, their solution does not support lazy binding and
cannot detect return address attacks beyond exploiting the GOT. In contrast, ROPdefender can detect
all ROP-based attacks even adversaries are able to bypass ASLR.

6.4 Compiler Extensions

Various compiler extensions were proposed to mitigate return address attacks. StackGuard [19] places a
dummy value, referred to as canary, below the return address on the stack. Before a function returns,
a check is enforced that proves whether the canary value has been overwritten or not. ProPolice [31]
reorders local variables to place buffers below the saved base pointer and places a guard value between
the buffers and the saved base pointer. Thus, if a buffer overflow occurs the local variables and pointers
will not be overwritten. Only the return address and the saved base pointer are overwritten which are
still protected by a canary. A more general approach, called PointGuard [18], encrypts all pointers and
only decrypts them when they are loaded into CPU registers. Hence, the adversary has only access to
encrypted pointers stored on memory. Close to our approach, Stack Shield [57] and Return Address
Defender (RAD) [15] guard the return addresses by holding copies of them in a safe memory area.

However, compiler-based solutions require recompilation and access to the source code. In contrast
ROPdefender requires no access to source code and therefore allows end-users to immediately deploy a
countermeasure against ROP. Further, none of them is able to detect ROP attacks based on unintended
instruction sequences (see Section 2.3 for an example). Nevertheless, in our approach we use the idea of
keeping a copy of the return address onto a shadow stack as used in [57, 15].

16

Finally, two compiler-based solutions were developed in parallel to our work that provide specifically
protection against ROP attacks [40, 47]. Li et al. [40] developed a compiler-based solution against
kernel rootkits that are based on the principles of ROP [33]. First, it eliminates all unintended return
instructions through code transformation. Second, the intended return instructions are protected by a
technique referred to as return indirection: The call instructions push a return index onto the stack which
points to a return address table entry whereas the return address table contains valid return addresses
the kernel is allowed to use. Hence, the adversary can only use return addresses which are included in the
return address table. The solution in [40] is complementary to our work, because it provides protection
at the kernel-level, whereas ROPdefender targets ROP attacks on the application-level. However, in
contrast to their work ROPdefender requires no access to source code and also addresses exceptional
cases which might occur during ordinary program execution.

A recent and noteworthy compiler-based approach is G-Free [47] that defeats ROP attacks through
gadget-less binaries. In contrast to the aforementioned approach and to ROPdefender , G-Free is also
able to detect ROP attacks that are based on indirect jumps. Basically, G-Free eliminates all unintended
instruction sequences by inserting an alignment sled (i.e., a byte stream consisting of nop instructions)
before all instructions which include byte values that might be useful for an unintended return or indirect
jump/call. Intended return instructions are protected by encrypting return addresses against a random
cookie created at runtime. Finally, upon function entry, a function-unique cookie is pushed onto the
stack for those functions that contain (intended) indirect jump or call instructions. Once an indirect
jump/call occurs, the cookie will be decrypted and only if the decryption is successful, the branch will be
allowed. Hence, this approach prevents the adversary from executing indirect jumps/calls in functions
that were not explicitly called before. However, although ROPdefender does not yet provide protection
against ROP without returns, it can be immediately deployed by end-users, because it does not require
access to side information.

6.5 Instrumentation-Based Solutions

Securing function epilogues. There are approaches [29, 16] that aim to detect malicious changes of
return addresses by using instrumentation techniques without requiring source code. Both approaches
rewrite function prologue and epilogue instructions to incorporate a return address check on each function
return. Chiueh et al. [16] use static instrumentation, i.e., the binary is disassembled and rewritten before
it is executed. However, accurate disassembly ahead of time is error-prone and difficult to achieve (as
analyzed in [16]). Gupta et al. [29] use probe-based instrumentation instead. However, as we already
described in Section 2.3, both approaches are not able to detect ROP attacks that use unintended
instruction sequences, because they only instrument intended function epilogues.

Control Flow Integrity. Control Flow Integrity (CFI) [1] used in XFI [2] guarantees that program
execution follows a Control Flow Graph (CFG) created at load-time. XFI requires modification, i.e.,
rewriting of the binary in order to add the so-called individual label instructions that indicate potential
and legal branch targets.8 During program execution, any branch instruction has to be instrumented
in order to check if the destination of the branch is pointing to a valid label instruction. Moreover, if a
function returns to its caller, the stack pointer has to point to a valid return address.

Regarding return address protection, the XFI’s rewriting engine first disassembles the binary in order
to find all return instructions. Afterwards it rewrites the returns to embed additional instrumentation
code that enforces a runtime check on the return address. Therefore XFI only instruments intended
return instructions and if an adversary is able to launch the first instruction sequence in a ROP attack
that ends in an unintended return instruction (which might be impossible if XFI guarantees that each
branch instruction is instrumented correctly), XFI will not be able to check if the return address at this
moment points to a valid label instruction. Besides, the binary instrumentation framework Vulcan [23]
used by XFI is not publicly available and is restricted to the Windows operating system. Moreover, to
build the CFG, XFI requires information on the program’s structure which are extracted from Windows
debugging information files (PDB files). However, such PDB files are not provided by default for each
application. Contrary, ROPdefender needs no information to enforce detection of ROP attacks and is
based on the open source Pin framework.

8They are similar to a nop instruction. Abadi et al. [1] propose the prefetchnta instruction.

17

Measuring frequency of Returns. Chen et al. [14] and Davi et al. [22] exploit jit-based instrumen-
tation to detect ROP attacks. Both solutions count instructions issued between two return instructions.
If short instruction sequences are issued three times in a row, they report a ROP attack. To bypass such
a defense, an adversary could enlarge the instruction sequences or enforce a longer instruction sequence
after, for instance, each second instruction sequence.

Just-in-Time Instrumentation. Program Shepherding [38] is based on the jit-based instrumentation
framework DynamoRIO and monitors control flow transfers to enforce a security policy. In contrast
to ROPdefender , it also instruments jump and call instructions from one code segment to another,
e.g., a jump from application code to a shared library should be only allowed if it targets a valid
entry point in the shared library. Moreover, as part of its restricted control-flow policy it provides
the following return address protection: It guarantees that a return only targets an instruction that is
preceded by a call instruction. Hence, the adversary can only invoke instruction sequences where the
first instruction is preceded by a call instruction. Although this prevents basic ROP attacks, it is still
possible to construct ROP attacks and to manipulate return addresses, because Program Shepherding
does not ensure that a return really targets its original destination (e.g., the calling function). Since each
library linked into the program’s memory space contains various call instructions, the adversary still
can return and invoke various instruction sequences without being detected by Program Shepherding.
In contrast, ROPdefender detects any return address manipulation and therefore completely prevents
the conventional ROP attacks that are based on returns. Moreover, Program Shepherding only handles
the special case of setjmp/longjmp, whereas ROPdefender also handles exceptions of Class 2 and 3 (see
Section 4). Another tool based on DynamoRIO is TRUSS (Transparent Runtime Shadow Stack) [53].
Similar to our approach, return addresses are pushed onto a shadow stack and a return address check
is enforced upon a function return. Due to jit-based instrumentation, TRUSS is also able to detect
unintended sequences issued in a ROP attack. However, the DynamoRIO framework does not allow to
instrument a program from its very first instruction. It depends on the LD_PRELOAD variable which is
responsible for mapping the DynamoRIO code into the address space of the application. Further, similar
to Program Shepherding TRUSS does not handle exceptions of Class 2 and 3.

Taint Tracking. Dynamic taint analysis based on jit-based instrumentation (e.g., [46, 17]) marks any
untrusted data (e.g., user input) as tainted. Tainted data could be user input or any input from an
untrusted device or resource. After marking data as tainted, taint analysis tracks the propagation of
tainted data, and alerts or terminates the program if tainted data is misused. Misuse of the tainted
data is, for instance, using the tainted data as jump/call or return target. This mechanism induces a
high performance overhead (30x to 50x for TaintCheck [46] and DYTAN [17]). However, we believe that
ROPdefender can also be incorporated into existing taint analysis systems.

6.6 Hardware-Facilitated Solutions

In [25] an embedded microprocessor is adapted to include memory access control for the stack, which
is split into data-only and call/return addresses-only parts. The processor enforces access control that
does not allow to overwrite the call/return stack with arbitrary data. This effectively prevents ROP
attacks. However, the approach is only demonstrated on a modified microprocessor and cannot be
transferred easily to complex instruction CPUs like Intel/AMD architectures. Moreover, we do not
expect CPU-integrated protection against ROP to appear in the near future. In contrast, our solution
is software-based and works with general purpose CPUs and operating systems. Another hardware-
facilitated solution available on SPARC systems is StackGhost [26]. StackGhost is based on stack cookies
that are XORed with return addresses at function entry and XORed again upon function return. The
design of StackGhost also includes a return address stack (similar to our shadow stack), but to the best
of our knowledge, this has not been implemented and benchmarked. Further, StackGhost depends on
specific features, which are unique to SPARC and which, according to [26], cannot be easily adopted to
other hardware platforms.

18

7 Conclusion and Future Work

Return-oriented programming (ROP) as presented by Shacham is a powerful attack that bypasses current
security mechanisms widely used in today’s computing platforms. The ROP adversary is able to perform
Turing-complete computation without injecting any new code. Further, he is able to execute instruction
sequences that were never intentionally placed by the programmer.

The main contribution of our work is to present an effective and practical countermeasure against
the conventional ROP attack without requiring access to side information. In this paper, we presented
our ROPdefender that fulfills accurately these requirements and that is able to detect/prevent even
ROP attacks that are based on unintended instruction sequences. For this, we exploited the idea of
duplicating return addresses onto a shadow stack and the concept of jit-based binary instrumentation
to evaluate each return instruction during program execution. In addition, we showed how to handle
various exceptional cases that can occur during program execution in practice.

ROPdefender induces a performance overhead by a factor of 2x which cannot be expected by time-
critical applications. Moreover, we need protection against return address attacks targeting the operating
system that ROPdefender relies on. But, ROPdefender is already a practical solution that can be imme-
diately deployed by end-users to protect applications against ROP attacks (based on return instructions)
without requiring access to source code or any other side information. Currently, we are working on a
countermeasure against ROP attacks without returns and on a countermeasure against ROP for embed-
ded systems based on the ARM architecture.

Acknowledgements

We thank Hovav Shacham and Stephen Checkoway for the fruitful discussions on return-oriented pro-
gramming attacks based on indirect jumps.

References

[1] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-flow integrity: Principles,
implementations, and applications. In CCS ’05: Proceedings of the 12th ACM Conference on Com-
puter and Communications Security, pages 340–353. ACM, 2005.

[2] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, George C. Necula, and Michael Vrable. XFI: software
guards for system address spaces. In OSDI ’06: Proceedings of the 7th symposium on Operating
systems design and implementation, pages 75–88, Berkeley, CA, USA, 2006. USENIX Association.

[3] Adobe Systems. Security Advisory for Flash Player, Adobe Reader and Acrobat: CVE-2010-1297.
http://www.adobe.com/support/security/advisories/apsa10-01.html, 2010.

[4] Aleph One. Smashing the stack for fun and profit. Phrack Magazine, 49(14), 1996.

[5] Anonymous. Once upon a free(). Phrack Magazine, 57(9), 2001.

[6] blexim. Basic integer overflows. Phrack Magazine, 60(10), 2002.

[7] Derek L. Bruening. Efficient, transparent, and comprehensive runtime code manipulation. http:

//groups.csail.mit.edu/cag/rio/derek-phd-thesis.pdf, 2004. PhD thesis, M.I.T.

[8] Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. When good instructions go
bad: Generalizing return-oriented programming to RISC. In CCS ’08: Proceedings of the 15th
ACM Conference on Computer and Communications Security, pages 27–38. ACM, 2008.

[9] Bryan Buck and Jeffrey K. Hollingsworth. An API for runtime code patching. Int. J. High Perform.
Comput. Appl., 14(4):317–329, 2000.

[10] Bryan M. Cantrill, Michael W. Shapiro, and Adam H. Leventhal. Dynamic instrumentation of
production systems. In Proceedings of USENIX 2004 Annual Technical Conference, pages 15–28,
Berkeley, CA, USA, 2004. USENIX Association.

19

http://www.adobe.com/support/security/advisories/apsa10-01.html
http://groups.csail.mit.edu/cag/rio/derek-phd-thesis.pdf
http://groups.csail.mit.edu/cag/rio/derek-phd-thesis.pdf

[11] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, Hovav Shacham,
and Marcel Winandy. Return-oriented programming without returns. In Proceedings of the 17th
ACM conference on Computer and communications security, CCS ’10, pages 559–572, New York,
NY, USA, 2010. ACM.

[12] Stephen Checkoway, Ariel J. Feldman, Brian Kantor, J. Alex Halderman, Edward W. Felten, and
Hovav Shacham. Can DREs provide long-lasting security? The case of return-oriented programming
and the AVC advantage. In Proceedings of EVT/WOTE 2009. USENIX/ACCURATE/IAVoSS,
2009.

[13] Stephen Checkoway and Hovav Shacham. Escape from return-oriented programming: Return-
oriented programming without returns (on the x86), February 2010. In submission.

[14] Ping Chen, Hai Xiao, Xiaobin Shen, Xinchun Yin, Bing Mao, and Li Xie. DROP: Detecting return-
oriented programming malicious code. In Atul Prakash and Indranil Gupta, editors, ICISS, volume
5905 of Lecture Notes in Computer Science, pages 163–177. Springer, 2009.

[15] Tzi-cker Chiueh and Fu-Hau Hsu. RAD: A compile-time solution to buffer overflow attacks. In
International Conference on Distributed Computing Systems, pages 409–417, Los Alamitos, CA,
USA, 2001. IEEE Computer Society.

[16] Tzi-cker Chiueh and Manish Prasad. A binary rewriting defense against stack based overflow attacks.
In Proceedings of the USENIX Annual Technical Conference, pages 211–224. USENIX, 2003.

[17] James Clause, Wanchun Li, and Alessandro Orso. Dytan: A generic dynamic taint analysis frame-
work. In Proceedings of the 2007 International Symposium on Software Testing, pages 196–206,
2007.

[18] Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle. Pointguard TM: protecting pointers
from buffer overflow vulnerabilities. In SSYM’03: Proceedings of the 12th conference on USENIX
Security Symposium, pages 91–104, Berkeley, CA, USA, 2003. USENIX Association.

[19] Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. StackGuard: automatic adaptive detection and
prevention of buffer-overflow attacks. In SSYM’98: Proceedings of the 7th conference on USENIX
Security Symposium, pages 63–78, Berkeley, CA, USA, 1998. USENIX Association.

[20] Dino Dai Zovi. Practical return-oriented programming. SOURCE Boston 2010, April 2010. Pre-
sentation. Slides: http://trailofbits.files.wordpress.com/2010/04/practical-rop.pdf.

[21] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel Winandy. Return-oriented
programming without returns on ARM. Technical Report HGI-TR-2010-002, Ruhr-University
Bochum, July 2010. Online: http://www.trust.rub.de/home/_publications/DaDmSaWi2010/.

[22] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. Dynamic integrity measurement and
attestation: Towards defense against return-oriented programming attacks. In Proceedings of the
4th ACM Workshop on Scalable Trusted Computing (STC’09), pages 49–54. ACM, 2009.

[23] Andrew Edwards, Amitabh Srivastava, and Hoi Vo. Vulcan binary transformation in a distributed
environment. Technical Report MSR-TR-2001-50, Microsoft Research, April 2001.

[24] Aurélien Francillon and Claude Castelluccia. Code injection attacks on harvard-architecture devices.
In CCS ’08: Proceedings of the 15th ACM Conference on Computer and Communications Security,
pages 15–26, New York, NY, USA, 2008. ACM.

[25] Aurélien Francillon, Daniele Perito, and Claude Castelluccia. Defending embedded systems against
control flow attacks. In Proceedings of the 1st Workshop on Secure Execution of Untrusted Code
(SecuCode’09), pages 19–26. ACM, 2009.

[26] Mike Frantzen and Mike Shuey. StackGhost: Hardware facilitated stack protection. In SSYM’01:
Proceedings of the 10th conference on USENIX Security Symposium, pages 55–66, Berkeley, CA,
USA, 2001. USENIX Association.

20

http://trailofbits.files.wordpress.com/2010/04/practical-rop.pdf
http://www.trust.rub.de/home/_publications/DaDmSaWi2010/

[27] gera. Advances in format string exploitation. Phrack Magazine, 59(12), 2002.

[28] Dan Goodin. Apple quicktime backdoor creates code-execution peril. http://www.theregister.

co.uk/2010/08/30/apple_quicktime_critical_vuln/, 2010.

[29] Suhas Gupta, Pranay Pratap, Huzur Saran, and S. Arun-Kumar. Dynamic code instrumentation
to detect and recover from return address corruption. In WODA ’06: Proceedings of the 2006
international workshop on Dynamic systems analysis, pages 65–72, New York, NY, USA, 2006.
ACM.

[30] Josh Halliday. Jailbreakme released for apple devices. http://www.guardian.co.uk/technology/
blog/2010/aug/02/jailbreakme-released-apple-devices-legal, August 2010.

[31] Hiroaki Etoh. GCC extension for protecting applications from stack-smashing attacks. http:

//www.trl.ibm.com/projects/security/ssp.

[32] Michael Howard and Matt Thomlinson. Windows vista isv security. http://msdn.microsoft.com/
en-us/library/bb430720.aspx, April 2007.

[33] Ralf Hund, Thorsten Holz, and Felix C. Freiling. Return-oriented rootkits: Bypassing kernel code
integrity protection mechanisms. In Proceedings of the 18th USENIX Security Symposium, 2009.

[34] Intel Corporation. Intel 64 and ia-32 architectures software developer’s manuals. http://www.

intel.com/products/processor/manuals/.

[35] Intel Parallel Studio. http://software.intel.com/en-us/intel-parallel-studio-home/.

[36] Vincenzo Iozzo and Ralf-Philipp Weinmann. Ralf-Philipp Weinmann & Vincenzo
Iozzo own the iPhone at PWN2OWN. http://blog.zynamics.com/2010/03/24/

ralf-philipp-weinmann-vincenzo-iozzo-own-the-iphone-at-pwn2own/, Mar 2010.

[37] jduck. The latest adobe exploit and session upgrading. http://blog.metasploit.com/2010/03/

latest-adobe-exploit-and-session.html, 2010.

[38] Vladimir Kiriansky, Derek Bruening, and Saman P. Amarasinghe. Secure execution via program
shepherding. In Proceedings of the 11th USENIX Security Symposium, pages 191–206, Berkeley,
CA, USA, 2002. USENIX Association.

[39] Tim Kornau. Return oriented programming for the ARM architecture. http://zynamics.

com/downloads/kornau-tim--diplomarbeit--rop.pdf, 2009. Master thesis, Ruhr-University
Bochum, Germany.

[40] Jinku Li, Zhi Wang, Xuxian Jiang, Michael Grace, and Sina Bahram. Defeating return-oriented
rootkits with ”return-less” kernels. In Proceedings of the 5th European conference on Computer
systems, EuroSys ’10, pages 195–208, New York, NY, USA, 2010. ACM.

[41] Felix Lindner. Developments in Cisco IOS forensics. CONFidence 2.0. http://www.recurity-labs.
com/content/pub/FX_Router_Exploitation.pdf, November 2009.

[42] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven
Wallace, Vijay J. Reddi, and Kim Hazelwood. Pin: Building customized program analysis tools
with dynamic instrumentation. In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation, volume 40, pages 190–200, New York, NY,
USA, June 2005. ACM Press.

[43] Microsoft. A detailed description of the data execution prevention (dep) feature in windows xp
service pack 2, windows xp tablet pc edition 2005, and windows server 2003. http://support.

microsoft.com/kb/875352/EN-US/, 2006.

[44] Nicholas Nethercote. Dynamic binary analysis and instrumentation. http://valgrind.org/docs/
phd2004.pdf, 2004. PhD thesis, University of Cambridge.

21

 http://www.theregister.co.uk/2010/08/30/apple_quicktime_critical_vuln/
 http://www.theregister.co.uk/2010/08/30/apple_quicktime_critical_vuln/
 http://www.guardian.co.uk/technology/blog/2010/aug/02/jailbreakme-released-apple -devices-legal
 http://www.guardian.co.uk/technology/blog/2010/aug/02/jailbreakme-released-apple -devices-legal
http://www.trl.ibm.com/projects/security/ssp
http://www.trl.ibm.com/projects/security/ssp
http://msdn.microsoft.com/en-us/library/bb430720.aspx
http://msdn.microsoft.com/en-us/library/bb430720.aspx
http://www.intel.com/products/processor/manuals/
http://www.intel.com/products/processor/manuals/
http://software.intel.com/en-us/intel-parallel-studio-home/
http://blog.zynamics.com/2010/03/24/ralf-philipp-weinmann-vincenzo-iozzo-own-the-iphone-at-pwn2own/
http://blog.zynamics.com/2010/03/24/ralf-philipp-weinmann-vincenzo-iozzo-own-the-iphone-at-pwn2own/
http://blog.metasploit.com/2010/03/latest-adobe-exploit-and-session.html
http://blog.metasploit.com/2010/03/latest-adobe-exploit-and-session.html
http://zynamics.com/downloads/kornau-tim--diplomarbeit--rop.pdf
http://zynamics.com/downloads/kornau-tim--diplomarbeit--rop.pdf
http://www.recurity-labs.com/content/pub/FX_Router_Exploitation.pdf
http://www.recurity-labs.com/content/pub/FX_Router_Exploitation.pdf
http://support.microsoft.com/kb/875352/EN-US/
http://support.microsoft.com/kb/875352/EN-US/
http://valgrind.org/docs/phd2004.pdf
http://valgrind.org/docs/phd2004.pdf

[45] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dynamic binary
instrumentation. SIGPLAN Not., 42(6):89–100, 2007.

[46] James Newsome and Dawn Song. Dynamic taint analysis for automatic detection, analysis, and sig-
nature generation of exploits on commodity software. In Proceedings of the Network and Distributed
Security Symposium, 2005.

[47] Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Davide Balzarotti, and Engin Kirda. G-Free : defeat-
ing return-oriented programming through gadget-less binaries. In ACSAC’10, Annual Computer
Security Applications Conference, December 2010.

[48] PaX Team. http://pax.grsecurity.net/.

[49] Giampaolo Fresi Roglia, Lorenzo Martignoni, Roberto Paleari, and Danilo Bruschi. Surgically
returning to randomized lib(c). Computer Security Applications Conference, Annual, 0:60–69, 2009.

[50] Heise Security. Pwn2Own 2009: Safari, IE 8 and Firefox exploited. http://www.h-online.

com/security/news/item/Pwn2Own-2009-Safari-IE-8-and-Firefox-exploited-740663.html,
2010.

[51] Hovav Shacham. The geometry of innocent flesh on the bone: Return-into-libc without function
calls (on the x86). In CCS ’07: Proceedings of the 14th ACM Conference on Computer and Com-
munications Security, pages 552–561. ACM, 2007.

[52] Hovav Shacham, Eu jin Goh, Nagendra Modadugu, Ben Pfaff, and Dan Boneh. On the effectiveness
of address-space randomization. In CCS 04: Proceedings of the 11th ACM Conference on Computer
and Communications Security, pages 298–307, New York, NY, USA, 2004. ACM Press.

[53] Saravanan Sinnadurai, Qin Zhao, and Weng fai Wong. Transparent runtime shadow stack: Protec-
tion against malicious return address modifications. http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.120.5702, 2008.

[54] Solar Designer. ”return-to-libc” attack. Bugtraq, 1997.

[55] Alexander Sotirov and Mark Dowd. Bypassing browser memory protections in Windows Vista.
http://www.phreedom.org/research/bypassing-browser-memory-protections/, August 2008.
Presented at Black Hat 2008.

[56] SPEC Standard Performance Evaluation Corporation. http://www.spec.org.

[57] Vendicator. Stack Shield: A ”stack smashing” technique protection tool for Linux. http://www.

angelfire.com/sk/stackshield.

[58] Peter Vreugdenhil. Pwn2Own 2010 Windows 7 Internet Explorer 8 exploit. http://

vreugdenhilresearch.nl/Pwn2Own-2010-Windows7-InternetExplorer8.pdf, 2010.

[59] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. Taintscope: A checksum-aware directed fuzzing
tool for automatic software vulnerability detection. In Proceedings of the 31st IEEE Symposium on
Security & Privacy (Oakland’10), Oakland, CA, May 2010.

22

http://pax.grsecurity.net/
 http://www.h-online.com/security/news/item/Pwn2Own-2009-Safari-IE-8-and-Firefox- exploited-740663.html
 http://www.h-online.com/security/news/item/Pwn2Own-2009-Safari-IE-8-and-Firefox- exploited-740663.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.120.5702
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.120.5702
http://www.phreedom.org/research/bypassing-browser-memory-protections/
http://www.spec.org
http://www.angelfire.com/sk/stackshield
http://www.angelfire.com/sk/stackshield
http://vreugdenhilresearch.nl/Pwn2Own-2010-Windows7-InternetExplorer8.pdf
http://vreugdenhilresearch.nl/Pwn2Own-2010-Windows7-InternetExplorer8.pdf

	Introduction
	Background on Return-Oriented Programming
	Basic Attack Technique
	Unintended Instruction Sequences
	ROP Attacks Based on Unintended Instruction Sequences

	Our Approach to Detect/Prevent ROP
	Assumptions
	High-Level Description
	Tools and Techniques
	General Architecture

	Implementation
	Binary Instrumentation Architecture
	Handling Exceptions

	Evaluation
	Performance
	Case Study
	Discussion and Future Work

	Related Work
	Type Safe Languages
	The W X Model
	Randomization
	Compiler Extensions
	Instrumentation-Based Solutions
	Hardware-Facilitated Solutions

	Conclusion and Future Work

