
1	

 

 
 

The	Diamond	Approach	for	SDN	Security1	

Angelo Liguori 
Huawei, German Research Center 

angelo.liguori@huawei.com 
 

Marcel Winandy 
Huawei, German Research Center 

marcel.winandy@huawei.com 
 

 

Introduction 
Software	Defined	Networking	(SDN)	has	attracted	a	lot	of	interest	in	both	academia	and	industry,	and	it	
has	started	to	be	adopted	in	real	system	implementations.	SDN	emerged	as	a	new	concept	with	the	

intent	of	enabling	central	programmability	of	the	network,	although	it	can	be	traced	back	to	earlier	
concepts	like	Active	Networks,	Network	Control	Point,	and	Routing	Control	Platform	[1,2,3].	SDN	is	
based	on	the	idea	of	decoupling	the	control	plane	from	the	data	plane,	introducing	a	logically	

centralized	control	with	open	interfaces,	and	providing	an	API	on	abstractions	of	the	network	elements	
to	program	their	forwarding	behaviour	[4].	SDN	opens	new	opportunities	for	telecommunications	and	
network	operators	as	well	as	enterprise	networks	by	providing	effective	means	for	fast	infrastructure	

provisioning	and	dynamic	reconfiguration	of	networks.	

SDN	also	poses	new	challenges	to	be	faced	as	it	introduces	new	components	to	the	network	(APIs,	
applications,	controller).	The	overall	complexity	of	ensuring	security	increases,	the	central	control	
becomes	a	new	popular	target,	and	the	openness	of	interfaces	makes	it	difficult	to	define	and	enforce	a	

security	policy.	Moreover,	SDN	security	has	a	twofold	meaning	[5]:	“Security	by	SDN”,	i.e.	increasing	the	
overall	network	security	of	a	system	using	SDN,	and	“Security	for	SDN”,	i.e.,	ensuring	the	secure	
implementation	and	operation	of	the	SDN	infrastructure	itself.	We	believe	that	the	problem	of	security	

for	SDN	should	be	addressed	first	(to	a	practical	and	sufficient	level)	before	new	security	services	using	
SDN	can	be	effectively	deployed.	A	key	issue	is	the	security	of	the	SDN	controller	as	it	is	the	“brain”	of	
the	network.	Any	successful	attack	at	the	controller	can	harm	the	whole	network.	

Attacks	to	SDN	can	take	the	form	of	Denial-of-Service,	aiming	at	undermining	the	availability	of	network	

operations,	or	the	form	of	Man-in-the-Middle	with	the	goal	to	modify	the	rules	sent	to	the	network	
devices	to	take	control	of	the	network	paths.	An	attacker	would	also	try	to	compromise	the	controller	

																																																													

1	Original	article	published	at:	IEEE Softwarization, March 2018 
https://sdn.ieee.org/newsletter/march-2018/the-diamond-approach-for-sdn-security 
	



2	

exploiting	vulnerabilities	and	installing	malicious	applications,	in	the	attempt	of	taking	full	control	of	the	

network	infrastructure.	The	mitigation	of	security	risks	in	SDN	requires	a	secure-by-design	approach	to	
provide	adequate	protection	of	the	infrastructure	from	both	malicious	attacks	and	unintentional	
vectors	(bugged	applications,	devices	misconfiguration,	etc.).	

Related Work 
A	couple	of	secure	designs	for	SDN	controllers	have	been	discussed	in	research,	e.g.,	[6,7,8,9].	FortNOX	

[9]	extends	the	controller	with	a	conflict	detection	engine	for	flow	rules	and	a	role-based	application	
authorization.	SE-Floodlight	[6]	adds	a	security	enforcement	kernel	to	the	controller,	i.e.,	all	operations	
from	applications	towards	the	data	plane	have	to	pass	a	security	mediation	for	authentication	and	

authorization.	ROSEMARY	[7]	focuses	on	resilience	through	SDN	applications	containment,	resource	
utilization	monitoring,	application	permissions,	and	minimizing	functionality	in	the	controller	kernel.	
LegoSDN	[8]	adds	reliability	and	fault	tolerance	by	providing	an	application	sandboxing	design	and	a	

mechanism	to	recover	applications	from	a	variety	of	failures.	

While	we	can	find	common	patterns	in	these	works	(separating	security	from	other	functionality,	
isolating	applications,	etc.),	they	have	not	yet	been	fully	adopted	by	industry.	For	example,	the	leading	
open-source	controllers	OpenDaylight	and	ONOS	have	both	some	forms	of	authentication	and	

authorization	for	external	applications,	but	other	security	functionality	is	either	lacking	(e.g.	isolation	of	
internal	applications/plug-ins)	or	mixed	together	with	other	functionality	in	one	large	executable.	A	
reason	for	the	low	adoption	might	be	that	the	SDN	community	is	missing	an	overview	of	the	security	

problems	and	security	patterns	and	a	lack	of	understanding	how	to	apply	them	to	SDN.	In	addition,	
many	existing	research	works	neglect	some	industry	demands,	e.g.	they	build	their	designs	on	single-
instance	controllers	and	do	not	consider	a	fully	distributed	architecture.	

The Diamond Approach 
In	order	to	overcome	these	obstacles,	we	have	systemized	six	core	design	principles	which	we	consider	

mandatory	for	a	secure	SDN	controller	architecture.	They	are	derived	from	best	practices	of	system	
security	and	cover	common	security	patterns	from	the	mentioned	research	works	as	well	as	important	
industry	requirements.	For	illustration,	we	put	these	principles	as	vertexes	of	a	polyhedron,	calling	to	

mind	the	shape	of	a	diamond	shielding	the	controller	(see	Figure	1).	Hence,	we	call	it	the	Diamond	
Approach	for	SDN	Security.	

Complete	Mediation:	Each	time	a	subject	attempts	to	access	a	resource,	the	system	should	mediate	
the	action.	This	principle	requires	systematic	access	control	for	resources	so	that	access	to	them	be	

checked	every	time	to	ensure	that	the	subject	has	proper	privileges.	The	“mediator”	should	be	the	logic	
unique	authority	for	this	checking,	and	it	could	take	advantage	of	the	features	provided	by	distributed	
systems.	

Compartmentalization:	This	principle,	aka	Sandboxing,	enforces	the	rule	that	an	occurred	security	

problem	should	be	limited	within	the	specific	compartment	containing	it.	This	is	a	well-known	concept	
in	all	contexts	that	require	safety,	e.g.	life-critical	systems.	For	SDN	it	applies	to	the	business	and	control	
layers,	where	applications	should	be	separated	and	isolated	from	each	other	and	from	the	controller	

itself.	

	



3	

	

Code	Size	Minimization:	An	important	aspect	in	security	is	to	reduce	the	trusted	computing	base,	i.e.,	

that	part	of	the	system	that	is	essentially	needed	for	security	and	if	compromised	can	totally	break	the	
security.	First,	minimizing	the	Lines	of	Code	(LOC)	reduces	the	possibility	of	errors	and	the	attack	
surface	exploitable	by	an	attacker.	Second,	a	thin	software	layer	can	be	semi-formally	or	formally	

verified	in	order	to	give	mathematical	evidences	that	it	correctly	fulfils	the	requirements	it	claims.	

Capability-based	Control:	This	allows	to	attach	authorizations	(i.e.	capabilities)	to	the	subjects	
demanding	the	service	instead	of	attaching	them	to	the	resources	providing	it	(Access	Control	List	
approach).	A	capability	is	completely	transferable	and	it	represents	the	ability	to	perform	privileged	

operations.	In	a	dynamic	environment,	where	SDN	applications	and	their	security	context	can	change	
often,	a	capability-based	control	can	be	easier	managed	and	audited.	

Concurrency:	In	a	distributed	system,	it	is	important	that	components	can	be	executed	and	work	
together	concurrently.	This	is	extremely	important	in	environments	like	SDN	where	controllers	can	be	

distributed	in	clusters	and	the	environment	is	highly	dynamic.	Operations	like	Leader	Election	and	Node	
Replication	are	examples	where	secure	concurrency	is	necessary.	

Compatibility:	In	the	variety	of	SDN	controllers	currently	available	on	the	market,	the	integration	of	
security	mechanisms	should	not	significantly	impact	the	interface	design	and	implementation	of	

existing	controllers.	A	solution	to	make	SDN	secure	should	be	transparent	for	the	controller	in	order	to	
allow	customers	to	apply	security	in	deployed	infrastructures	and	preserve	the	“openness”	SDN	
originally	introduced.	

Implementation 
We	applied	the	idea	of	the	diamond	approach	in	our	Secure	Controller	Architecture	(SCONA)	that	pools	

and	combines	together	these	principles.	Figure	2	depicts	an	overview	of	SCONA	components,	each	of	

Figure	1:	SDN	Security	Principles	(Diamond	Approach)	



4	

one	designed	to	address	the	SDN	security	problem	in	a	seamlessly	way	from	the	application	(business)	

layer	to	the	data	plane.	

The	main	component	of	SCONA	is	the	Network	Security	Kernel	(NSK).	It	follows	the	idea	of	security	
kernels	from	operating	systems	and	is	specifically	designed	to	accomplish	the	principles	of	complete	
mediation	of	all	the	messages	(synchronous	and	asynchronous)	between	applications	and	data	plane,	

compartmentalization	of	security	functionality	from	the	rest	of	the	controller,	and	code	size	
minimization	(our	current	prototype	has	less	than	20k	LOC).	

SCONA	Controller	Applications	Sandbox	(CAS)	and	Controlled	Trusted	Software	(CTS)	also	enforce	the	
principle	of	compartmentalization,	avoiding	that	internal	applications	could	be	used	to	subvert	the	

security	of	the	overall	controller	and	providing	an	environment	for	trusted	higher-level	security	
functions,	e.g.	application	behaviour	monitoring.	The	remaining,	non-security	related	functionality	of	
the	SDN	controller	is	what	we	call	the	Controller	Core	(CC)	component.	SCONA	implements	a	capability-

based	reference	monitor	engine	that	enforces	the	security	check	for	every	application	and	data	plane	
device	through	the	cooperation	of	NSK	and	SCONA	Controller	Core.	

For	concurrency,	the	NSK	is	also	designed	to	be	highly	scalable	and	reconfigurable	in	order	to	provide	
high	performance	in	terms	of	availability.	Finally,	NSK	is	designed	to	be	compatible	with	existing	SDN	

protocols	and	controller	APIs	because	it	enforces	only	access	decisions	between	components	and	their	
requests.	Higher	level	aspects	(e.g.,	checking	consistency	of	the	SDN	policy)	are	left	to	CTS.	

	

	

Figure	2:	SCONA	Architecture	



5	

Outlook	
SCONA	and	our	diamond	approach	try	to	overcome	the	often	partial	perspective	offered	by	prior	

research	and	existing	industry	implementations.	A	key	difference	and	the	novelty	of	our	approach	lies	in	
the	fact	that	SCONA	logically	envelopes	the	controller.	It	effectively	enforces	not	only	the	security	of	
applications	towards	data	plane,	but	also	limits	the	attacks	coming	from	data	plane	against	applications	

and	the	controller	itself.	

Further	challenges	need	to	be	addressed	in	order	to	still	enhance	the	security	of	SDN.	For	example	a	
formal	analysis	of	SCONA	code	or	the	introduction	of	a	policy	checker	engine,	just	to	name	a	few.	

Formal	verification	provides	evidences	of	the	correctness	of	the	developed	components	and	algorithms,	
whereas	the	capability	to	check	if	applications’	commands	could	lead	to	conflicting	rules	against	the	
established	security	policies	can	help	maintaining	the	network	in	a	secure	and	consistent	state.	

Performance	and	fault	tolerance	are	also	important	aspects	to	address	in	order	to	make	SCONA	scalable	
and	augment	the	resilience	of	our	solution.	

We	are	currently	evaluating	and	enhancing	our	prototype	according	to	the	afore-mentioned	features	
and	hope	to	push	this	technology	into	products	in	the	near	future.	

References 
1. D.	Tennenhouse,	J.	Smith,	W.	Sincoskie,	D.	Wetherall,	and	G.	Minden,	“A	survey	of	active	

network	research”	IEEE	Communications	Magazine,	vol.	35,	no.	1,	pp.	80–86,	Jan.	1997	

2. D.	Sheinbein	and	R.	P.	Weber,	“800	service	using	SPC	network	capability”,	Bell	Syst.	Tech.	J.,	vol.	
61,	no.	7,	pp.	1737–1744,	Sep.	1982	

3. M.	Caesar	et	al.,	“Design	and	implementation	of	a	routing	control	platform”,	Proceedings	of	the	
2nd	conference	on	Symposium	on	Networked	Systems	Design	&	Implementation,vol.	2,	pp.	15–
28,	2005	

4. M.	Jarschel,	T.	Zinner,	T.	Hossfeld,	P.	Tran-Gia,	W.	Kellerer,	“Interfaces,	Attributes,	and	Use	
Cases:	A	Compass	for	SDN”,	IEEE	Communications	Magazine,	vol.	52,	pp.	210-217,	2014	

5. S.	Scott-Hayward,	G.	O'Callaghan,	and	S.	Sezer,	“SDN	Security:	A	Survey”,	IEEE	SDN	for	Future	

Networks	and	Services	(SDN4FNS),	Trento,	pp.	1-7,	2013	

6. P.	Porras,	P,	S.	Cheung,	S,	M.	Fong,	K.	Skinner,	V.	Yegneswaran,	“Securing	the	Software	Defined	
Network	Control	Layer”,	2015.	

7. S.	Shin,	Y.	Song,	T.	Lee,	S.	Lee,	J.	Chung,	P.	Porras,	V.	Yegneswaran,	J.	Noh,	and	B.	Byunghoon	
Kang,	“Rosemary:	A	Robust,	Secure,	and	High-performance	Network	Operating	System”.	In	
Proceedings	of	the	2014	ACM	SIGSAC	Conference	on	Computer	and	Communications	Security	

(CCS	'14).	ACM,	New	York,	NY,	USA,	78-89.	2014.	

8. B.	Chandrasekaran,	B.	Tschaen,	and	T.	Benson,	“Isolating	and	Tolerating	SDN	Application	
Failures	with	LegoSDN”.	In	Proceedings	of	the	Symposium	on	SDN	Research	(SOSR	'16).	ACM,	

New	York,	NY,	USA,	Article	7,	12	pages,	2016	

9. P.	Porras,	S.	Shin,	V.	Yegneswaran,	M.	Fong,	M.	Tyson,	and	G.	Gu,	“A	security	enforcement	
kernel	for	OpenFlow	networks”.	In	Proceedings	of	the	first	workshop	on	Hot	topics	in	software	

defined	networks	(HotSDN	'12).	ACM,	New	York,	NY,	USA,	121-126,	2012	


