
Patterns for Secure Boot and Secure Storage in Computer Systems

Hans Löhr, Ahmad-Reza Sadeghi, Marcel Winandy
Horst Görtz Institute for IT Security, Ruhr-University Bochum, Germany

{hans.loehr,ahmad.sadeghi,marcel.winandy}@trust.rub.de

Abstract—Trusted Computing aims at enhancing the security
of IT systems by using a combination of trusted hardware
and software components to provide security guarantees. This
includes system state integrity and the secure link between
the software and hardware of a computing platform. Although
security patterns exist for operating system security, access
control, and authentication, there is still none of Trusted
Computing aspects. In this paper, we introduce security
patterns for secure boot and for secure storage, which are
important basic Trusted Computing concepts. Secure boot is
at the heart of most security solutions and secure storage is
fundamental for application-level security: it ensures that the
integrity of software is verified before accessing stored data.
Our paper aims at complementing existing system security
patterns by presenting the common patterns underlying the
different realizations of secure boot and secure storage.

Keywords-security patterns; trusted computing; secure boot;
secure storage;

I. INTRODUCTION

The literature on security patterns includes numerous
patterns related to operating systems, e.g., concerning au-
thentication and access control. However, until now, Trusted
Computing (TC) has received very little attention from
the pattern community. TC aims to employ a combination
of hardware security mechanisms and software to address
security problems that cannot be solved by software alone.
Particularly relevant among these are security threats related
to malicious software, such as Trojan horses and viruses.
By now, there is not only a tremendous amount of research
in this field, but TC concepts can also be found in a wide
variety of products, ranging from embedded devices, such as
mobile phones, to servers equipped with expensive tamper-
resistant secure co-processors. The best-known approach to
TC is based on the specifications released by the Trusted
Computing Group (TCG) [1].

In this paper, we present the patterns underlying two
fundamental TC concepts: secure boot and secure storage.

Secure boot guarantees that violations of integrity prop-
erties of the software stack that is booted on a platform
can be prevented, i.e., software that violates the integrity
properties cannot be loaded. A variant of this pattern, termed
authenticated boot, does not prevent software from being
loaded, but allows reliable verification of the load-time
integrity of the software that has been booted later on. Secure
boot is a building block at the heart of many TC-based
solutions (including implementations of secure storage).

Secure storage is a crucial application-level requirement
in many scenarios. Simple encryption is often not enough to
protect sensitive data: it must also be ensured that an attacker
cannot obtain the decryption key. Secure storage solves this
issue by using hardware (and software) to enforce access
restrictions on the stored data. Before access is granted to
an application, the integrity of the software is verified.

Secure storage and secure boot are essential concepts for
TC systems. For instance, a Common Criteria protection
profile for security kernels with TC support has been eval-
uated and certified recently [2], which also includes secure
boot and secure storage. The security patterns described here
could be helpful to implement these features for security
kernels that aim to comply with this protection profile.

This paper describes the common pattern underlying
various existing realizations of secure boot [3], [4], [1], [5],
and of secure storage [4], [1], [5].

II. SECURE BOOT PATTERN

Intent: This pattern addresses how to ensure that vio-
lations of integrity properties of the software stack that is
booted on a platform can be either prevented (secure boot)
or detected (authenticated boot).

A. Example
Consider a user who wants to use a computing device

that was left unattended or that was used by another person
before. How can the user be sure that the system software
is in the intended operational state, i.e., that no critical
component of the operating system or other software ap-
plications has been modified in a malicious or unauthorized
way? Typically, a file integrity checker program can check
the integrity of system and application files. However, any
file integrity checker program must rely on trusted reference
values and that those values have not been tampered with.
Moreover, the user wants also to be sure that the file integrity
checker itself is not tampered with or deactivated at all.

B. Context
Users of security-sensitive applications want to be sure

about the operational integrity of their applications and exe-
cution environment. Unauthorized changes to the application
code or the operating system may lead to unintentional
program behavior or violation of security goals. Users trust
the hardware, but they need a way to verify that the software
loaded on this hardware has not been tampered with.



C. Problem

On conventional platforms, software can be manipulated
or exchanged. Local users cannot verify if they are interact-
ing with the “correct” software, and remote platforms cannot
verify the software of their communication partner.

Before applications can be used on a computer system, the
system has to be bootstrapped. Typically, the hardware starts
by loading a piece of code (firmware, or BIOS on PCs),
which in turn loads the bootloader from a pre-defined place
from main storage (the disk drives). The bootloader loads
the operating system kernel, and the operating system kernel
loads system services, device drivers, and other applications.

At any stage of the bootstrap process, software compo-
nents could have been exchanged or modified by another
user or by malicious software that has been executed before.

The following forces have to be resolved:
• You want to ensure the integrity of the loaded software

on the system, otherwise malicious software could run
without being noticed.

• You want the computer system to always boot in a well-
defined secure state. Otherwise, attackers could violate
security goals by putting it into an insecure state.

• You want to allow modifications of the operating
system or application binaries. Otherwise, software
installation and updates would be problematic.

D. Solution

Based on the assumption that the hardware of the com-
puter system is correct, the integrity of lower layer boot
modules is checked and control is transferred to the next
stage if and only if the integrity of that stage is valid. Hence,
every stage is responsible for checking the integrity of the
next stage. Integrity checking can be performed in different
ways: two common methods are comparing hash values or
verifying digital signatures. In the first case, hash values of
program binaries are computed using a cryptographic hash
function (e.g., SHA-1) and compared to reference values.
If the computed value does not match the reference value,
the binary has been modified. In the second case, each
program binary is cryptographically signed by its vendor
with a signature key that is only known to the vendor. The
signature of the binary can be verified to check that it has
not been modified since its signature generation.

If one stage detects an integrity violation, execution is
stopped and the system halts. The sequence of these integrity
checks builds the chain of trust. Thus, the user knows
implicitly that the system has booted valid program code
if it is running at all.

If the first module of such a sequence of integrity checks
has already been modified in an unauthorized or malicious
way, then the user cannot trust on subsequent integrity
checks. The modified module could cheat or even skip any
integrity checking. Therefore, the very first boot module

is the root of trust for the whole chain of integrity mea-
surements and needs to be protected against unauthorized
modifications. The integrity verification data (hash reference
values, or signature verification keys) must be protected, too.

To protect the initial boot module (and its verification
data) and to reliably build the chain of trust, the root of
trust is realized in hardware. Hardware is assumed to be
more secure than software because it cannot be changed or
read out as easily as software. Moreover, hardware security
modules can be protected against various physical attacks –
at least to some extend.

1) Structure: Figure 1 shows the elements of the Secure
Boot pattern. The Root of Trust for Measurement is the first
module in the bootstrap chain and realized and protected
by hardware. A Bootstrap Module has a link to the next
Bootstrap Module, which is “measured” for its integrity
(typically, by computing a hash value) before control is
transferred. Each Bootstrap Module has to maintain (and
protect) its corresponding integrity verification data. The ver-
ification data of the Root of Trust module is also protected
by the hardware, e.g., stored in protected memory registers.

Figure 1. Elements of the Secure Boot pattern.

Usually, the last Bootstrap Module is the operating sys-
tem, which can load several different applications and not
only one. In addition, applications can also start other appli-
cations or load libraries. In this case, applications also have
to measure the integrity of the corresponding components.

2) Dynamics: When the computer system is started, the
Root of Trust for Measurement is executed. It loads and
measures the program code of the subsequent Bootstrap
Module, and verifies the integrity of this code. If this fails,
the Root of Trust stops the execution and the system is
halted. Otherwise, the Root of Trust transfers control to the
subsequent Bootstrap Module.

The Bootstrap Module loads and measures the code of
the next Bootstrap Module, and verifies the integrity of this
code based on the verification data. If this fails, the system is
halted, otherwise control is transferred to the next Bootstrap
Module. This continues until the last module in the chain of
trust has received control (typically, applications).

E. Example Resolved

Based on secure boot, the user can be sure that the
correct system has been booted on the computer without



changes, because any modifications would have caused the
boot process to abort. Moreover, it is not possible to boot
a completely different system, because the boot chain starts
with a root of trust protected by hardware.

F. Variants

Authenticated boot refers to an architecture that ensures
that local or remote parties can verify properties of the
software that has been booted. While secure boot interrupts
the boot process if a modification of the loaded modules
is detected, authenticated boot continues the boot process
even in that case. However, any modification is detected and
recorded securely for later inspection or verification.

Authenticated boot can be implemented using a hardware
security module in the following way: The first module in the
bootstrap chain is trusted by assumption (e.g., implemented
in hardware), and measures the integrity of the next mod-
ule. This integrity measurement is then stored in protected
hardware registers. The measurements taken at load-time of
the software can later be reported by the security module.
For this, the module signs the stored values.

G. Known Uses

There are various implementations of secure boot:
• AEGIS [3] is a secure boot architecture for PCs, where

a chain of trust is constructed at boot time by hashing
components, and comparing the result with digitally
signed reference values. An expansion card implements
the necessary hardware root of trust for measurement.

• The Cell Broadband Engine processor [4] implements a
secure boot mechanism to load application code into an
isolated execution mode of one of its multiple processor
cores. The Cell processor provides a hardware root of
trust that verifies the integrity of the loaded code cryp-
tographically. Only if the verification succeeds, the code
is executed. Moreover, every time an application wants
to use this isolated execution environment, it has to pass
the secure boot process. Within the isolated mode, the
application code is protected from software running on
other cores and even from the operating system running
on the supervisor core. The Cell Broadband Engine is
used in IBM Cell blade servers and also in the Sony
Playstation3 game console.

• For mobile devices, requirements for secure boot have
been collected in Open Mobile Terminal Platform
(OMTP) recommendations [5] that take into account
different industrial standards and specifications, in-
cluding specifications from the Open Mobile Alliance
(OMA), the TCG, and the 3rd Generation Partnership
Project (3GPP). The document describes the mecha-
nisms for secure boot and authenticated boot in an
abstract way, and hardware manufacturers implement
them differently.

There is a well-known example for authenticated boot:

• The TCG specified authenticated boot based on the
TPM [1]. The TPM contains special-purpose registers
called Platform Configuration Registers (PCRs) that can
be used to store hash values. These PCRs cannot be
overwritten but only “extended” by computing hash val-
ues. Starting from the root of trust for measurement, all
software modules in the boot chain of a TCG-enabled
PC (BIOS, boot loader, operating system kernel, etc.)
are first hashed, a PCR is extended accordingly, and
then control is transferred. By this, the entire bootstrap
chain is measured and recorded in PCRs. The TPM also
offers a function TPM_Quote, where the recorded hash
values are digitally signed and reported to the caller.

H. Consequences

The benefits from the secure boot pattern include:
• The software integrity state is verified at boot time, and

only software that passed this verification is booted.
• With the variant authenticated boot, it is possible to

boot any software, however, the integrity state of the
software at boot time can be checked later.

The liabilities from the secure boot pattern include:
• Integrity verification data must be installed and updated

(e.g., due to revocation) in a secure fashion (preserving
integrity, authenticity, and freshness of the data).

• Software updates could be an issue, because after an
update, the integrity state is changed (the software is
modified). Hence, specific mechanisms for updates are
needed to allow the system to boot properly afterwards.

• The integrity of modules during runtime needs to be
ensured by additional mechanisms.

• The integrity verification of large modules (e.g., an
entire OS) may be time consuming. Hence, the OS may
require adaption to include integrity verification of its
modules and applications.

• This pattern adds complexity and overhead. It needs to
be coordinated with the other protection mechanisms.

I. Related Patterns

Boot Loader [6] describes the boot process as a sequence
of single bootstrap stages. Each stage loads the image of the
next one and transfers control after validation of the image
according to certain requirements, typically verifying error
correction checksums. In contrast, Secure Boot requires a
secure verification of the integrity of the image in each stage,
e.g., based on cryptographic hash functions. In addition,
Secure Boot defines a root of trust for measurement and
requires its protection by trusted hardware to establish a
chain of trust throughout all stages.

Authenticator [7] verifies the identity of a subject and
creates a proof of identity for later use, e.g., in access control
decisions. However, it is typically intended to authenticate
users and it does not include a protection for the Authen-
ticator itself. Hence, it cannot provide a chain of trust. But



Authenticator can be combined with Secure Boot to extend
the proof of identity to the underlying system components.

In [8], the authors introduce patterns for TPM usage.
Their patterns concern the communication of software with
the TPM, whereas the Secure Boot pattern describes more
abstract concepts that can be realized based on TPMs, or
based on alternatives, such as secure co-processors.

III. SECURE STORAGE PATTERN

Intent: Secure storage provides confidentiality and in-
tegrity for stored data, and additionally enforces access
restrictions on entities that want to access data. In particular,
the secure storage can verify the integrity of software com-
ponents, and it grants access to the data only to authorized,
unmodified components that meet these restrictions.

A. Example
Consider the problem of storing passwords (e.g., for web

services) securely on a computer. Users want to protect their
passwords, such that attackers who might install malicious
software on the computer (e.g., phishers using malware)
cannot access them. In this case, simply encrypting the
passwords with a passphrase does not help: The software
installed by the attacker might look exactly like the legit-
imate software (i.e., the password manager they normally
use) to users, so they enter their passwords. Thus, the
attacker obtains the passphrase, and can decrypt and steal
all passwords. We need to store passwords in such a way
that only the legitimate password manager can access them.

B. Context
You need to provide storage that protects the confiden-

tiality and integrity of stored data, and which verifies the
integrity of the software before granting access to the data.
You trust the hardware, but you need to be able to verify
that only authorized, unmodified software can access data
stored in the secure storage.

C. Problem
Cryptographic techniques exist to protect the confidential-

ity and integrity of data, e.g., encryption and digital signa-
tures. However, the secret keys need to be protected against
unauthorized usage. Operating system access controls are
not sufficient because the access control component could
be manipulated or replaced by an attacker.

The following forces have to be resolved:
• You need to protect the confidentiality and integrity of

data, even when the system is not running. Otherwise,
an attacker could read or modify protected data.

• You need to protect secret cryptographic keys from
unauthorized access and usage. Otherwise, an attacker
could use the keys, e.g., to decrypt confidential data.

• You want to allow modifications of the operating
system or application binaries. Otherwise, software
installation and updates would be problematic.

D. Solution

A Root Key is used to encrypt and decrypt data and
other keys (which in turn can protect data or other keys).
The usage of the Root Key is controlled by a Root Key
Control component. Root Key and Root Key Control are
both protected by trusted hardware, i.e., the secret part of
the Root Key never leaves the hardware, and Root Key
Control cannot be manipulated or replaced by users or
other software programs. Root Key Control verifies the
integrity of Applications and their Execution Environment
before it performs cryptographic operations on behalf of an
Application.

1) Structure: Figure 2 shows the elements of the Secure
Storage pattern. Root Key Control has solely access to the
Root Key, and both are protected by hardware. The Root
Key can protect an arbitrary amount of Data. A special
case of Data are Application Keys, which Applications can
use to protect their application-specific data. The Root Key
Control maintains a mapping of what Data can be accessed
by which Application. It uses integrity verification data (hash
reference values, or digital signatures) to verify the integrity
of Applications and their Execution Environment.

Figure 2. Elements of the Secure Storage pattern.

2) Dynamics: When an Application requests to access
Data, the Root Key Control verifies first the integrity of the
Application and of the software components of the Execu-
tion Environment the Application is executed in (typically,
the operating system components). Only if the integrity
verification succeeds, Root Key Control uses the Root Key
to decrypt (or encrypt) the Data. Note that the Root Key is
never passed to an Application. Instead, the Root Key Con-
trol performs the corresponding encryption and decryption
operations and only returns the result.

E. Example Resolved

Passwords are stored in secure storage, ensuring that
the integrity of the application and its trusted computing
base (TCB) are verified before the application can access



the passwords. Access is granted only to the authorized
password manager, and only if it is running in a secure
execution environment on a secure operating system. It is
important to include the TCB (here: operating system) into
the verification process, because on an insecure system,
malware might be able to read the memory of the password
manager and hence gain access to the passwords.

F. Known Uses

There are various implementations of Secure Storage:
• The Cell processor [4] features storage that can only

be accessed when the processor is in a “secure state”.
In this state, software that is running on the processor
has been measured by a secure boot mechanism. This
way, the Cell processor can provide secure storage.

• TPM sealing [1] is a mechanism specified by the TCG
and implemented in the TPM. With this functionality,
a key which can be used only inside the TPM can
be restricted in its use by defining specific values for
the PCRs. Since the PCRs securely store the recorded
measurements from the authenticated boot process,
usage of the key can be restricted to software that passes
the integrity verification.

• The OMTP TR1 recommendation [5] includes detailed
requirements for secure storage on mobile devices.

G. Consequences

The benefits from the secure storage pattern include:
• Only software where the integrity verification suc-

ceeded can access the protected data. In combination
with a secure operating system, this can prevent mal-
ware from accessing sensitive data.

• Data can be stored on a system, such that it can be
accessed only when the authorized operating system
and software has been started.

The liabilities from the secure storage pattern include:
• Backup strategies become more involved, because the

encryption keys are protected in hardware. Data must
be encrypted with a different key for the backup system,
or a mechanism is needed to backup hardware-protected
keys to other secure hardware.

• After an update, software cannot access protected data
anymore, if no additional mechanisms are in place.
Thus, software updates become more difficult.

• This pattern adds complexity and overhead. It needs to
be coordinated with the other protection mechanisms.

H. Related Patterns

Secure Storage requires Secure Boot to protect the in-
tegrity verification data. If Applications and their Execution
Environment are also part of the Secure Boot, then Root Key
Control can rely on the integrity verification during Secure
Boot and does not need to perform it explicitly.

Secure Storage also requires Controlled Virtual Address
Space [7] for providing isolated memory for each process to
protect private data against unauthorized access. Otherwise
malicious processes could wait until the authorized process
has access to the decrypted data, and simply copy the data
from the memory of this process.

Information Obscurity [7] also addresses how to protect
data stored on a system from unauthorized access. Applica-
tion components obscure data by applying encryption, and
encryption keys are hidden in a protected location. Secure
Storage describes how to realize such a protected location.

In Controlled Execution Environment [7], a process
also requests to access a protected resource, and the access is
granted or denied based on the access rights of the process.
However, the protection of such resources is based on access
control rules and requires the underlying Reference Mon-
itor [7] of the operating system to be trusted. In contrast,
Secure Storage protects the data (using a trusted component
such as a security module) even if the operating system
has been manipulated or completely replaced. Moreover,
granting access in Secure Storage is bound to the integrity
of the requesting program and its execution environment.

IV. CONCLUSION

Secure boot and secure storage are fundamental concepts
of Trusted Computing that are vital to a variety of security
solutions. In this paper, we introduced the common patterns
that are at the core of different implementations of these
concepts. We expect our patterns to become a valuable
addition to existing operating system security patterns.

REFERENCES

[1] Trusted Computing Group, “TCG TPM Specification, Version 1.2, Re-
vision 103,” https://www.trustedcomputinggroup.org/specs/TPM, 2007.

[2] H. Löhr, A.-R. Sadeghi, C. Stüble, M. Weber, and M. Winandy,
“Modeling trusted computing support in a protection profile for high
assurance security kernels,” in 2nd International Conference on Trusted
Computing (TRUST 2009). LNCS 5471, Springer, 2009, pp. 45–62.

[3] W. A. Arbaugh, D. J. Farber, and J. M. Smith, “A secure and reliable
bootstrap architecture,” in IEEE Symposium on Security and Privacy.
IEEE, 1997, pp. 65–71.

[4] K. Shimizu, “The Cell Broadband Engine processor security
architecture,” http://www.ibm.com/developerworks/power/library/
pa-cellsecurity/, Apr. 2006.

[5] Open Mobile Terminal Platform Consortium, “OMTP advanced trusted
environment: OMTP TR1 (v1.1),” 2009, recommendation document,
available at http://www.omtp.org/Publications.aspx.

[6] D. Schütz, “Boot loader,” in Proceedings of the 11th European Con-
ference on Pattern Languages of Programs (EuroPLoP 2006), 2006.

[7] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann,
and P. Sommerlad, Security Patterns: Integrating Security and Systems
Engineering. J. Wiley & Sons, 2006.

[8] S. Gürgens, C. Rudolph, A. Maña, and A. Muñoz, “Facilitating the use
of TPM technologies through S&D patterns,” in 18th Intl. Workshop on
Database and Expert Systems Applications (DEXA’07). IEEE, 2007,
pp. 765–769.


